Tutorial 6

Dynamic Scheduling

Tomasulo Algorithm

Quick overview of dynamic scheduling

* Recall that whenever an instruction stalls on the MIPS 5-
stage pipeline, all instructions after it must also stall.

ADD.D F1,F2,F3 IF ID Al A2 A3 A4 ME WB
MUL.D F4,F1,F5 IF ID - - == —-=- M1 M2 M3 M4 M5 M6
SUB.D F7,F8,F9 IF -- -- -- ID Al A2 A3 A4 ME

e SUB.Disn't dependent on either ADD.D or MUL.D. Having to stall
SUB.D here is inefficient.

e An instruction should not need to stall if its operands are already
available.

Dynamic scheduling (cont'd)

Dynamic scheduling allows independent instructions behind a
stall to proceed. If we added hardware for dynamic scheduling to
our pipeline, we could have:

ADD.D Fl(FZ,FB IF ID A1l A2 A3 A4\ME WB
MUL.D F4,F1,F5 IF ID - - -=- -=- M1 M2 M3 M4 M5 M6
SUB.D F7,F8,F9 IF ID A1l A2 A3 A4 ME WB

With dynamic scheduling, we allow instructions to execute and
complete out of order.

An instruction can begin execution as soon as its operands are
available.

Tomasulo's algorithm implements dynamic scheduling

Tomasulo's algorithm

e Now we depart from the simple "IF ID EX MEM WB" 5-stage pipeline

 Each instruction in Tomasulo's algorithm has 3 stages:

1.

Issue: send instruction to an appropriate "reservation station". If a
reservation station is not available, then we must stall this instruction
(and all instructions behind it — so issuing of instructions is done in order).
After being issued, the instruction is referred to by the name of the
reservation station it occupies.

Execute: if operands are available, then start execution; otherwise, wait
for the operands to become available and then start execution.
Therefore, the execution of instructions may be out of order.

Write result: send execution results to a common data bus. Any

instructions (and registers) waiting for this result will pick it up from the
bus. The Write Result stage may also be out of order.

More on Execute stage

What happens in the execute stage for different instruction types ?

* ALU/logical instructions: perform the ALU/logical operation,
such as add, divide, etc.

* Loads: calculate address and then load data from memory.
e Stores: calculate address and then store data to memory.

Both loads and stores require an additional step to compute the
effective address.

Tomasulo Hardware

From instruction unit

RegisterStatus:
Qi fields
Instruction
queue FP registers ‘ | /
—
|
Load-store
operations
Floating-point SK:;:“"
Store buffers operations
—3 Load buffers Qi = 0 means actual
Y value in register file
Operation bus
I I } t Qi '= 0 means result
3 .
5 Redaridiin 2 will be produced by
! stations a reservation station
Data .
Memory unit FP adders FP mutti
Common data bus (CDB)

2007 e, 0 AL Aghis reserved

Loop ExamEIe

Instruction status: Exec Write
ITER Instruction J k Issue CompResult Busy Addr Fu
1 LD FO 0 R1 Loadl| No
1 MULTD F4 FO F2 Load2| No
|l SD F4 0 R1 Load3| No
Storel| No
Store2| No
Store3| No
Reservation Stations: SI 82 RS
Time Name Busy Op Vj Vk Q) Ok Code:
Addl | No LD FO 0 R1
Add2 | No MULTD F4 FO F2
Add3 | No SD F4 0 R1
Multl [No SUBI R1 Rl #8
Mult2 | No BNEZ R1 Loop
Register result status
Clock Rr1 FO F2 F4 Fo6 F8 FI10 F12 .. F30

0 Fu

Reservation Stations

» Several fields per reservation station
— OP : the operation

— Qj, Qk: The reservation stations that produce the value used for the
operation

— Vj, Vk: The actual value of the source operand

— A: offset/effective address for LD/ST
— Busy: if reservation station is being used

* At any given time, either the V or the Q field is active for each
operand. When a Q value becomes available, Q is set to 0 and
the value is written in V. When both Vi and Vk are available in
the reservation station, the operation can be carried out in
the functional unit corresponding to OP.

* The register file also has a field Qi which tells which
reservation station will produce the result to be stored, when
it gets broadcasted.

Register Result Status
* Works in parallel with the register file

e Contains a Qi value for each register
— If Qi=0, the register file contains the required value
— If Qil=0, the register file is waiting for the result of a
computation.

* When issuing an instruction, the algorithm checks
the Register Result Status for each argument of the
operation. If Qi=0, take the value from the register
file and save in Vi. If Qi!=0, copy Qi to the reservation
station so it gets the value too when it gets
produced.

Functional Units

Several functional units can perform various types of operations in
parallel if the arguments are available. e.g.: Memory unit, FP add,
FP multiply.

Each functional unit can perform its operation using more than one
clock cycle (e.g.: add=2, mult=5, div=20, Id/hit=1, Id/miss=7), which
can introduce structural hazards.

Only a single instruction targeting a given functional unit can
proceed at any given time.

Only a single result from any functional unit can be broadcasted
through the Common Data Bus (CDB) at any given time, which can
introduce structural hazards.

Loads and stores require two steps: 1- effective address
computation, 2- place the operation in a LD or ST buffer

Common Data Bus (CDB)

Connects the output of the Functional Units to all
blocks which are expecting those results.

Transmitting a result through the CDB uses 1 clock
cycle, but every consumer gets the value at once.

The bus cannot handle more than one write at a
time. If several instructions want to write to the bus
in the same cycle, the earliest instruction (in program
order) will get the bus.

The implicit Register renaming of Tomasulo removes
the possibility of WAR and WAW hazards.

Since all instructions are issued in program order,
true dependencies are preserved.

Load/Store Dependencies

Loads and stores require an additional clock cycle to
compute the effective address (addition of imm + an
integer register value) in the Address Unit

Stores also have Vi/Qi fields, which holds the value to be
stored in memory, or the reservation station which will
produce it

Loads and stores can safely be done out of order if they
access different addresses.

If they have the same address:

— Interchanging a LD, ST sequence => WAR hazard
— Interchanging a ST, LD sequence => RAW hazard
— Interchanging a ST, ST sequence => WAW hazard

(Loads can always be re-ordered.)

Load/Store Dependencies

* Before executing memory accesses out of order,
need to know their effective addresses.

 One way: Perform effective address calculation in
program order.

* Other way: When the CPU supports speculation, we
canh choose to assume that addresses are different

and verify later.

Problems with Tomasulo

* [mprecise exceptions

* Limited overlapping of adjacent basic blocks

e Solution?

— Hardware speculation: Speculative Tomasulo

* New pipeline stage: Instruction commit
* New hardware: Reorder Buffers (ROB)
* QOut-of-order execution, in-order completion

