ECSE 425 - Tutorial 3

RISC Architecture

Instruction Set Architecture (ISA)

 Computers run programs made of simple
operations called “instructions”

* The list of instructions offered by the machine
is the “instruction set”

* The instruction set is what is visible to the
programmer (really the compiler, although
humans can directly program in “assembly
language”).

Instructions

* Two kinds of information in a computer:
— instructions
— data

* |nstructions are stored as bits, just like data

* |nstructions and data are stored in memory
(or memories)

Basic Computer Organization

Limited number
of fast registers
for temporary
storage

Large amount

of slow memory
Arranged as an array
of bytes

© W. J. Gross, V. Hayward, T.
Arbel, ECSE 425

load

store

memory

A

OPCODE OPERANDS

Instructions are loaded into an
Instruction register (IR) from the
address pointed to by the program
counter (PC). The PCis incremented
by the instruction size (in bytes)

for each new instruction.

E.g. PC<& PC+4

Load/Store Architecture (Reg-Reg)

registers

load store

memory

A

© W. J. Gross, V. Hayward, T.
Arbel, ECSE 425

e Instructions can ONLY get their data and write
their result from/to registers.

e The register numbers are specified in the operand
fields of the instruction

e Since data is stored in memory, we need special
“load” and “store” instructions for transfers between
registers and memory. These two instructions are
the ONLY ones allowed to access memory

Load/Store Architecture (Reg-Reg)

registers

load store

memory

A

© W. J. Gross, V. Hayward, T.
Arbel, ECSE 425

e RISC architectures are load/store. The regularity of
this architecture enables fast organizations using
pipelining.

e CISC machines (e.g. Intel IA-32) permit instructions to
get their data from both registers and memory (mem-
reg). These highly irregular architectures (mem-reg,
variable-length instructions) are practically impossible
to pipeline.
e The advantage of them is that they produce
shorter programs (no loads or stores needed,
variable-length instr.), but memory today is cheap
and compilers can’t really use complex instructions
anyways.

e Modern “CISC” machines really just translate the CISC
instructions to a set of RISC instructions and run those.
e Done purely for compatibility reasons.

MIPS64 - Architecture

RISC architecture => Load-Store

32-bit instructions

31 * 64-bit GPRs
—R1, .., R31

— RO is hardwired to zero (and writing to it does
nothing)

32 FPR
—FO, ..., F31

MIPS64 - Data Types

* |nteger
— 8-bits (byte)
— 16-bits (short or half-word)
— 32-bits (word)
— 64-bits (double word)

* Floating point
— 32-bits (single-precision)
— 64-bits (double-precision)

MIPS64 - Instruction Format

I-type instruction
6 5 5 16

Opcode rs rt Immediate

Encodes: Loads and stores of bytes, half words, words,
double words. All immediates (rt = rs op immediate)

Conditional branch instructions (rs is register, rd unused)
Jump register, jump and link register
(rd = 0, rs = destination, immediate = 0)

R-type instruction
6 5 5 5 5 6

Opcode rs rt rd shamt funct

Register-register ALU operations: rd - rs funct rt
Function encodes the data path operation: Add, Sub, . ..
Read/write special registers and moves

J-type instruction
6 26

Opcode Offset added to PC

Jump and jump and link
Trap and return from exception

© W. J. Gross, V. Haywe & 5565 Elsevier Sci R g
Arbel, ECSE 425 sevier Science ()- All rights reserved.

Instruction Types

Instruction types:

e ALU instructions
—+,-/,% % &, |, N >>, <<, >, <, ==, etc..
 Load/store

— Get a value/store a value in memory

* Branches and jumps
— Modify the Program Counter (PC): PC ., != PC+4

Addressing Modes

 Immediate (constants)

ADD R4, #3 Regs[R4] < Regs[R4] + 3

* Register-Register

ADD R4, R5, R6 Regs[R4] < Regs[R5] + Regs[R6]

* Displacement (computed addresses, pointers, local variables,
array accesses

LD R4, 100 (R3) Regs[R4] « Mem[Regs[R3] + 100]

* For others (not really used in RISC too often), see Figure B.6.

RISC Instructions

Instruction types:

* ALU instructions: reg-reg or reg-imm
— reg&<ALU(reg,reg) : ADD R3,R1,R2
— reg&ALU(reg,imm) : SUB R3, R1, #2
* Data transfers (load/store): reg-imm
— reg&MEM(ALU(reg,imm)) : LOAD R3, 4(R1)
— MEM(ALU(reg,imm))<éreg : STORE R3, O(R1)
e Control (Branches and jumps): reg-imm
— PC & PC+ imm if cond(reg,reg) : BEQ R3, R4, label

Instruction Types

Arithmetic and Logical | Add, subtract, and, or, shifts, multiply, divide.
Data Transfer Load, Store

Control Branch, jump, procedure call, return, trap.
System Syscall, Virtual memory management
Floating Point FPadd, FPmult, FPdiv, FPcompare

Decimal Arithmetic and conversion

Strings Move, copy, compare, search

Graphics Pixel, Vertex ops, compress, decompress

© W. J. Gross, V. Hayward, T.
Arbel, ECSE 425

MIPS64 — Sample Program

(5*6)+(7 *8) (C = high—level language)

DADDUI R1, RO, #5
DADDUI R2, RO, #6
DMULU R3, R1, R2
DADDUI R1, RO, #7
DADDUI R2, RO, #8
DMULU R4, R1, R2
DADDU R5, R3, R4

See Figure B.26 for a subset of the MIPS64 instruction set

Instruction Types

* Itis often the case that few instruction statistically dominate.
— e.g. SPEC92 benchmark indicates (80x86):

Loads: 22%
Branches: 20%
Compare: 16%
Store: 12%
ALU: 19%

* Important conclusions:
— 5 (simple) types make 89% of all instructions
* make these fast!
— twice as many loads than stores (more reads than writes)

Pipelining

Classic 5-stage RISC pipeline:

* |F: fetch instruction [memory, read]
* |D : decode [register file, read]

— Read from register file, sign-extend imm, comparisons
 EX: execute [ALU]

— Used for: eff. mem. addr,, reg-reg and reg-imm.
* MEM : access memory [memory, r/w]
 WB : write-back in registers [register file, write]

Pipelining
Classic 5-stage RISC pipeline:

CC1

CC2

CC3

CC4

CC5

Pipelining

Classic 5-stage RISC pipeline:

cc1 cc2 cC 3 cC 4 . CCS5

| | - ' '
Mem HReg - (Mem (Reg

2007 Elsavier, inc. All rights resarved.

Hazards

e Structural hazards: multiple stages can’t run at
the same time because they share a resource

* Data hazards: adjacent instructions use results
not yet produced/saved

* Branch hazards: you need to jump in the
instruction flow but only figure out some
number of cycles later

Hazards

* Data hazards: adjacent instructions use results

not yet produced/saved

DADD
DSUB
AND
OR
XOR

R1,R2, R3
R4, R1, RS
R6, R1, R7
R8, R1, RS
R10, R1, R11

