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Last Time

* Directory Coherence
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Todax

* Last lecture!
— Synchronization
— Memory Consistency Models
— Niagara T1 Performance
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anch ronization

* Why Synchronize?
— To know when it is safe to access shared data

* |ssues for Synchronization

— Hardware primitives: uninterruptable instructions to
read and update memory (atomic operations)

— Synchronization libraries: user level operation using
these primitives;

— Synchronization performance: for large scale MPs,
synchronization can be a bottleneck

* Need techniques to reduce contention and latency of
synchronization
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Atomic I\/Iemorx Ogerations

* Atomic exchange
— Interchange a register value for a memory value

— Can be used to build a lock:
e 0= lockis free
e 1 = lock is unavailable

— To obtain the lock, set register to 1 and exchange with
memory

— New value in register determines success in getting lock
* 0if you succeeded in setting the lock (you were first)
* 1 if another processor had already claimed access

— The key is that the exchange operation is indivisible (e.g.
serialized)
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Atomic Memory Operations, Cont’d

* Test-and-set
— Tests a value and sets it if the value passes the test
— E.g., check if value is O; if so, setto 1

* Fetch-and-increment: it returns the value of a
memory location and atomically increments it

— 0 = synchronization variable is free
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ImEIementing Atomic OEerations

* Hard to perform both a read and write in one
Instruction
— Use a pair instead
— Success as long as the pair appears atomic
— Failure if another processor changes the memory value
between the instruction pair
* Load linked (or load locked) + store conditional
— Load linked returns the initial value
— Store conditional returns

e 1 if there was no intervening store to same memory location
e 0 otherwise (including if there’s a context switch, etc)
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LL and SC ExamEIes

* Atomic exchange

try: mov R3,R4 ; mov exchange value
| R2,0(R1) ;load linked
SC R3,0(R1) ; store conditional
beqz R3,try ; branch if store fails
mov R4,R2 ; put load value in R4

e Fetch and increment

try: |l R2,0(R1) ;load linked
addi R2,R2,#1 ;increment (OK if reg—reg)
SC R2,0(R1) ; store conditional
beqz R2,try ; branch if store fails
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User Level anchronization Examgle

* Spin locks

— Processor continuously tries to acquire a lock,
spinning around a loop until it does so

— Winning processor executes the code after the lock,
then resets the lock

daddui R2,RO,#1 ; desired lock value
lockit: exch R2,0(R1) ; atomic exchange
bnez R2,lockit ; try again if R2 ==
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Locks and Coherence

 What about MP with cache coherency?
— Want to spin on cached copy to avoid full memory latency
— Lock locality: use a lock once, likely use it again

* Problem: exchange includes a write
— Invalidates all other copies (even if lock acquisition fails)
— Generates considerable interconnect traffic

* Solution: read first to check if lock is free

— Don’t attempt to write until when it changes, then try
exchange (“test and test and set”):

try: daddui R2,R0,#1 ;tosetlocktol

lockit: Iw R3,0(R1) ;load the lock
bnez R3,lockit ;# 0 => not free = spin
exch R2,0(R1) ;atomic exchange

bnez R2,try ;already locked?
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Memory Consistencx Models

* Example
P1: A=0; P2: B=0;
1; B=1;
L1: if(B==0).. L2: if(A==0)...
— Is it impossible for both if statements L1 and L2 to be
true?

— What if write invalidate is delayed and a processor
continues?

* Memory consistency models set rules for such
cases

>
1
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Seguential Consistencx

e Result of any execution is the same as if
— the accesses of each processor occur in order, and

— the accesses among different processors were
interleaved

=> in previous example, assignments must finish
before if condition evaluation can begin

* SC delays all memory accesses until all invalidates
have completed

— Cannot simply place write in a buffer and continue
with a subsequent read
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Relaxing Seguential Consistencx

e Sequential consistency can slow down performance
— Not needed for most programs: they are synchronized

— For such programs, need faster schemes

* A program is synchronized if all access to shared data are
ordered by synchronization operations
write (x)

release (s) {unlock}
acquire (s) {lock}

'r.f;ad (x)
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Relaxed Consistency Models

* Relaxed consistency
— allow reads and writes to complete out of order, but
— use synchronization operations to enforce ordering,
=> so that a synchronized program behaves as if the
processor were sequentially consistent
 Example: relaxing RAW results in a total store
ordering (TSO) model
— Retain orders among the writes, but reads to different
addresses allowed to proceed
* By relaxing access ordering increases performance
— But introduces many complexities
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Memory Consistencx and SEecuIation

* An alternative: speculation
e Speculation can hide the latency of a strict

consistency model
— Execute memory accesses out-of-order
— Commit in-order

* When an invalidation arrives for memory
reference in the re-order buffer

— Uses speculation recovery to back out and restart
with invalidated memory reference
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T1 (“Niagara”) by Sun in 2005

* Target: Commercial server applications with

* High thread-level parallelism (TLP)
— 8 core, each supports 4 HW threads

— Each core is single-issue, 6-deep pipeline with 5 standard
stages plus one stage for thread switching

— Fine-grain multithreading: switch thread each cycle
* |dle threads are bypassed in scheduling
* Processor stalls only when all 4 threads stall
* 3 cycle delay for loads and branches, covered by other threads

* Low instruction level parallelism (ILP)

 Small L1 caches, Shared L2
— L1 are 16K or 8K, 4-way set associative
— L2 are 3M 12-way
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T1 Architecture

e Four shared L2 cach

— Each associated with

a memory bank

e L1 caches uses a
directory at L2 to

maintain coherency

* L1 write through

— Only invalidate
messages required

— Data can always be
retrieved from L2

* Asingle FP unit, FP
not a focusinT1
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Miss Rates: L2 Cache Size, Block Size
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Miss Latency: L2 Cache Size, Block Size
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Status on an average thread
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Not Readx Breakdown
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e Other category

— TPC-C - store buffer full is largest contributor
— SPEC-JBB - atomic instructions are largest contributor
— SPECWeb99 - both factors contribute
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I\/IicroErocessor ComEarison

Processor SUNT1 Opteron Pentium D IBM Power 5

Cores 8 2 2 2
Instruction issues

/ clock / core 1 3 3 4
Peak instr. issues

/ chip 8 6 6 8
Multithreading Fine-grained No SMT SMT
L1 1/D in KB per core 16/8 64/64 12/16 64/32
L2 per core/shared 3 MB shared 1MB/core 1MB/core 1.9 MB shared
Clock rate (GHz) 1.2 2.4 3.2 1.9
Transistor count (M) 300 233 230 276
Die size (mm?) 379 199 206 389
Power (W) 79 110 130 125
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Performance Relative to Pentium D
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Performance/mm?, Performance/Watt
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Niagara 2

* Improve performance by increasing threads
supported per chip from 32 to 64

— 8 cores * 8 threads per core
* Floating-point unit for each core,
— Not for each chip

e Extra hardware support
— Encryption, I/0, memory controllers
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Next Time

* Project presentations, day one
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