ECSE 425 Lecture 28:
Snoopy Coherence Protocols

H&P Chapter 4

© 2011 Patterson, Vu, Meyer; © 2007 Elsevier Science

Last Time

e Cache coherence
 Memory consistency

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 28 . '
Elsevier Science

Todax

e Cache Coherence Protocols
— Write Update
— Write-Through Invalidate
— Write-Back Invalidate

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 28 . '
Elsevier Science

Write UEdate

* An alternative to write invalidate
* On a write, update all cached copies

— Broadcast the write value to all shared cache lines

e Consumes considerable bandwidth
— And as a result, not popular

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 28 . '
Elsevier Science

Write Invalidate

* A writing cache has exclusive access to the data

— All other copies (with other processors) are
invalidated

* |f another processor reads after a write
— The read will miss (the data was marked invalid)
— The processor will fetch the new copy

e |ftwo writes to the same data at the same time
— Competition— one succeeds, the other fails

— The failed processor must obtain a new copy of data
to complete its write

— This is called write serialization

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 28 . '
Elsevier Science

Example: Write Invalidate

o

I/O devices

I ®

Memory

* Must invalidate before step three

* Write update uses more broadcast medium BW
=> all recent MPs use write invalidate

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 28 . '
Elsevier Science

Write Invalidate ImEIementation

 Broadcast on the bus to invalidate shared data
— First, acquires bus access
— Second, broadcast the address to be invalidated

e Other processors continuously snoop the bus
— Compare addresses against cache contents
— If the invalidated matches, they invalidate their copy

* The bus serializes writes
— Two simultaneous writes?
— Only one processor gets bus access

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 28 . '
Elsevier Science

Locating UE-to-date Data

* On a R/W miss, need to find up-to-date data

* Write-through: get an up-to-date copy from memory
— Simple, but high memory BW requirement

* Write-back: up-to-date copy may be in a cache
— Snoop for both misses and writes
— Processors with dirty data respond to read misses
— Can be slower than accessing memory if the processors
are on separate ChipS
* Write-back requires less memory bandwidth
=> Can support larger numbers of faster processors
=> Most multiprocessors use write-back

ECSE 425, Fall 2011, Lecture 28 © 2011 Patterson, Vu, Meyer; © 2007 8
Elsevier Science

Cache Behavior and Local Accesses

* Normal cache tags can be used for snooping
— Compare tag on bus with tag in cache

* Valid bit per block makes invalidation easy

* Read misses are handled by main memory and
other snooping processors

* When writing, need to know if the block is shared
— Maintain a “shared” bit for each cache block
 Block not shared? no need to broadcast the write

* |f the block is shared, broadcast an invalidate
— Then mark block as exclusive (unshared)

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 28 . '
Elsevier Science

Cache Behavior and Remote Requests

* Must check the cache on every bus transaction
— Could interfere with processor cache accesses

* Reduce interference by duplicating tags
— One set for CPU accesses, one set for bus accesses

* Or, reduce interference by using L2 tags
— L2 is less heavily used than L1
— Requires L2 inclusion

* |f snooping hitsin L2
— Check if the data is dirty in L1
— May require stalling the processor

© 2011 Patterson, Vu, Meyer; © 2007

Elsevier Science 10

ECSE 425, Fall 2011, Lecture 28

ImEIementing SnooEing

* Implement a cache controller at each node

* Logically, a controller for each cache block

— Snooping operations or cache requests for different
blocks can proceed independently

* Physically, the single controller interleaves
multiple operations on distinct blocks

— Though only one cache access or one bus access is
allowed at time,

— One operation may start before another finishes

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 28 . '
Elsevier Science

11

1. Write-Through Invalidate Protocol

* Two states per block Ersj//--B .
rvvr usvvr
— Valid and Invalid

— As In an uniprocessor

* Any writes invalidate all PrRd / BusRd ' Buswir /-
other cached copies Prvr / BusWy |
— Can have multiple BT /-
simultaneous readers BusRd / -

— Write invalidates them

State Tag Data State Tag Data

PrRd: Processor Read
PrWr: Processor Write @

BusRd: Bus Read ¢ oo o ¢
BusWr: Bus Write ‘I_|_ﬁ“_|_L>
Mem I/O devices

© 2011 Patterson, Vu, Meyer; © 2007

Elsevier Science 12

ECSE 425, Fall 2011, Lecture 28

Now for Some Assumgtions

* One-level cache

* Bus transactions and memory operations are
atomic

* All phases of a transaction complete before the
next starts

* Processor waits for a memory operation to
complete before issuing the next

* Invalidations are applied during bus transactions

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 28 . '
Elsevier Science

13

Is the Two-state Protocol Coherent?

 The processor observes memory state by issuing
memory operations

* Writes are serialized in the order in which they
appear on the bus
— All writes go to bus, and are atomic
=> |nvalidations are applied to caches in bus order
 How to insert reads in this order?

— Important, since processors see writes through reads, so
determines whether write serialization is satisfied

— But read hits may happen independently and do not
appear on bus or enter directly in bus order

ECSE 425, Fall 2011, Lecture 28 © 2011 Patterson, Vu, Meyer; © 2007
Elsevier Science

14

Orderin

Py: —>®—>®—> ®\

Py: ®—> W
P,: ®—>®——>g‘ >
* Writes establish a partial order

* Read ordering is unconstrained
— Though shared-medium (bus) will order read misses

— Any order among reads between writes is fine,
as long as in program order for each processor

© 2011 Patterson, Vu, Meyer; © 2007

Elsevier Science 15

ECSE 425, Fall 2011, Lecture 28

2. Write-Back Invalidate Protocol

 Each memory block is in one state:
— Uncached
— OR Clean in all caches and up-to-date in memory (Shared)
— OR Dirty in exactly one cache (Exclusive)

e Each cache block is in one state (track these):
— Invalid: block contains no data (as in uni-processor cache)
— OR Shared: block can be read (clean)

— OR Exclusive (or Modified): cache has only copy, it is
writeable and dirty

* All caches snoop read and write misses
— Write-back on read misses
— Write-back and Invalidate on write misses

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 28 . '
Elsevier Science

16

Write-Back State Machine—Bus requests

Invalidate
for this block

e State machine

for bus requests | Write miss Shared
for each Invalid . for this block (read only)
cache block

Read miss
Werite miss for this block

for this block

Write Back
Block; (abort
memory access)

Read miss

for this block
Write Back

Block; (abort
memory access)

Exclusive
(read/write)

© 2011 Patterson, Vu, Meyer; © 2007
Elsevier Science

ECSE 425, Fall 2011, Lecture 28 17

Write-Back State Machine—CPU Requests

CPU Read hit

'

Shared
(read only)

e State machine
for CPU requests P Rend

for each Invalid
cache block / Place read miss

on bus

CPU Write

Place Write
Miss on bus

CPU Write
Place Write Miss on Bus

Exclusive
(read/write)

CPU read hit
CPU write hit

© 2011 Patterson, Vu, Meyer; © 2007 18

ECSE 425, Fall 2011, Lecture 28 . '
Elsevier Science

Block Replacement

CPU Read hit

e State machine '
for CPU requests oL Ron .
for each cache Invalid road oniy
b|OCk J Place read miss
on bus
CPU Write |
Place Write CPU read miss glpU Readdm|§s
Miss on bus Write back blg ace read miss
Place read on bus
on bus
CPU Write

Place Write Miss on Bus

CPU read hit

CPU write hit CPU Write Miss (replace block)

Exclusive
Write back cache block

(read/write)
Place write miss on bus

© 2011 Patterson, Vu, Meyer; © 2007
Elsevier Science

ECSE 425, Fall 2011, Lecture 28 19

Write-back State Machine-lll

e State machine
for CPU requests
and
for bus requests

cache block write miss
for this block

Write Back

Block; (abort

Memory access)

Invalid
/ CPU Read
Place read miss
for each)

Invalidate for this block
CPU

Read hit

-

Shared
(read only)

Write miss
~ for this block

\ |

on bus

CPU read miss
Write back block,

CPU Read miss
Place read miss

Place read on bus

miss on bus CPU Write
CPU Write Place Write Miss on Bus
Place Write Write Back Block;
Miss on bug

(abort memory

CPU read hit

CPU write hit
ECSE 425, Fall 2011, Lecture 28

Exclusive

(read/write)

© 2011 Patterson, VU™~da

Read miss
for this block

access)

CPU Write Miss (replace block)
Write back cache block
Place write miss on bus

. . ; © 2007 20
Elsevier Science

Next Time

* Write-back Invalidate Example

 Symmetric Shared-Memory Multiprocessor
Performance

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 28 . '
Elsevier Science

21

