ECSE 425 Lecture 27:
Symmetric Multiprocessors

H&P Chapter 4

© 2011 Patterson, Vu, Meyer; © 2007 Elsevier Science

Last Time

e Basic multi-processor architecture
* Parallel processing challenges

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 27 . '
Elsevier Science

Todax

* Symmetric Multiprocessors
— Cache coherence

— Memory consistency

* Introduction to Cache Coherence Protocols

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 27 . '
Elsevier Science

Symmetric Shared-Memory

* Reduce memory bandwidth with multilevel caches

— |If bandwidth is reduced enough, multiple processors may
be able to share the same memory

— E.g., multiple processor boards connected by a shared bus
— E.g., multiple processors inside a single chip

* Private data is used by a single processor

e Shared data is used by multiple processors
— Shared value may be replicated in many caches

— Reduces latency and bandwidth requirements, but
introduces a cache coherence problem

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 27 . '
Elsevier Science

Example Cache Coherence Problem

* Processors see different values for u after event 3

* With write-back caches
— Memory and caches store different values of u
— Value written to memory depends on access ordering

* Unacceptable for programming, and it’s frequent!

@ |/O devices

u:ss ——— |

Memory

ECSE 425, Fall 2011, Lecture 27 © 2011 Patterson, Vu, Meyer; © 2007
Elsevier Science

But Coherence is Not Enough

Pq Py
/*Assume initial value of A and flagis 0*/
A= 1; while (flag == 0); /*spinning*/
flag = 1; print A;

* Coherence pertains only to single location

* Memory must respect order between
accesses to different locations by a process
— To preserve orders dmong accesses to same
location by different processes

* This is called consistency

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 27 . '
Elsevier Science

Memory System Model

* Aread request for an address should return the
last value written to that address

1. Coherence defines values returned by a read

2. Consistency determines when a written value
will be returned by a read

e Coherence defines the behavior of accesses to
the same location

* Consistency defines the behavior of accesses to
different locations

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 27 . '
Elsevier Science

Deﬁning Coherent Memory System

1. Preserve program order:
— RAW from the same processor (no intervening write)
— Read must return the value written by write

2. Coherent view of memory:
— RAW by different processors (given “sufficient” time)
— Read must return the value written by write

3. Write serialization:
— WAW by different processors

— Two writes to same location by any two processors
must be seen in the same order by all processors

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 27 . '
Elsevier Science

Deﬁning Consistency

 When must a written value be seen by a read?
— RAW by different processors
— If insufficient time separation, read may not return
the value of the most recent write
* For now assume

— A write does not complete (and allow the next write
to occur) until all processors have seen its effect

— The processor does not change the order of any write
with respect to any other memory access

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 27 . '
Elsevier Science

Basic Schemes for Enforcing Coherence

* A program executing on multiple processors will
have copies of the same data in several caches

* Coherent caches support migration and replication

* Migration— data can be moved to a local cache and
used there in a transparent fashion

— Reduces both latency and bandwidth demand

* Replication— for shared data being simultaneously
read, since caches make a copy of data in local cache

— Reduces both latency and contention for read shared data

* Rather than avoiding sharing in SW, SMPs use a HW
protocol to maintain coherent caches

— Cache coherence protocols

Two Classes of Coherence Protocols

1. Directory-based: sharing status of a block of
physical memory is kept in the directory
— Slightly higher implementation overhead
— Can scale to larger processor counts

2. Snooping: every cache with a copy of data also
maintains the sharing status of block

— All caches must be accessible via some broadcast medium

— All cache controllers monitor (“snoop”) the medium and
respond to requests for data

— Existing broadcast mechanism makes snooping simple to
implement, but also limits its scalability

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 27 . '
Elsevier Science

11

Snooping Protocols

State 6
/ Address Bus snoop
L1 1 Data | J
$
\\

Mem

I1/0O devices

Cache-memory
transaction

* Cache continuously monitor transactions on the bus
* Respond or take action when address matches a block the

cache contains

— Invalidate, update, or supply value

— Depending on state of the block and the protocol

* On a write: either get exclusive access before write via
write invalidate or update all copies on write

ECSE 425, Fall 2011, Lecture 27

© 2011 Patterson, Vu, Meyer; © 2007
Elsevier Science

12

Write UEdate

* An alternative to write invalidate
* On a write, update all cached copies

— Broadcast the write value to all shared cache lines

e Consumes considerable bandwidth
— And as a result, not popular

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 27 . '
Elsevier Science

13

Write Invalidate

* A writing cache has exclusive access to the data

— All other copies (with other processors) are
invalidated

* |f another processor reads after a write
— The read will miss (the data was marked invalid)
— The processor will fetch the new copy

e |ftwo writes to the same data at the same time
— Competition— one succeeds, the other fails

— The failed processor must obtain a new copy of data
to complete its write

— This is called write serialization

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 27 . '
Elsevier Science

14

Example: Write Invalidate

o

I/O devices

I ®

Memory

* Must invalidate before step three

* Write update uses more broadcast medium BW
=> all recent MPs use write invalidate

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 27 . '
Elsevier Science

15

Write Invalidate ImEIementation

 Broadcast on the bus to invalidate shared data
— First, acquires bus access
— Second, broadcast the address to be invalidated

e Other processors continuously snoop the bus
— Compare addresses against cache contents
— If the invalidated matches, they invalidate their copy

* The bus serializes writes
— Two simultaneous writes?
— Only one processor gets bus access

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 27 . '
Elsevier Science

16

Locating UE-to-date Data

* On a R/W miss, need to find up-to-date data

* Write-through: get an up-to-date copy from memory
— Simple, but high memory BW requirement

* Write-back: up-to-date copy may be in a cache
— Snoop for both misses and writes
— Processors with dirty data respond to read misses
— Can be slower than accessing memory if the processors
are on separate ChipS
* Write-back requires less memory bandwidth
=> Can support larger numbers of faster processors
=> Most multiprocessors use write-back

ECSE 425, Fall 2011, Lecture 27 © 2011 Patterson, Vu, Meyer; © 2007 17
Elsevier Science

Cache Behavior and Local Accesses

* Normal cache tags can be used for snooping
— Compare tag on bus with tag in cache

* Valid bit per block makes invalidation easy

* Read misses are handled by main memory and
other snooping processors

* When writing, need to know if the block is shared
— Maintain a “shared” bit for each cache block

 Block not shared? no need to broadcast the write

* |f the block is shared, broadcast an invalidate
— Then mark block as exclusive (unshared)

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 27 . '
Elsevier Science

18

Cache Behavior and Remote Requests

* Must check the cache on every bus transaction
— Could interfere with processor cache accesses

* Reduce interference by duplicating tags
— One set for CPU accesses, one set for bus accesses

* Or, reduce interference by using L2 tags
— L2 is less heavily used than L1
— Requires L2 inclusion

* |f snooping hitsin L2
— Check if the data is dirty in L1
— May require stalling the processor

© 2011 Patterson, Vu, Meyer; © 2007

Elsevier Science 19

ECSE 425, Fall 2011, Lecture 27

ImEIementing SnooEing

* Implement a cache controller at each node

* Logically, a controller for each cache block

— Snooping operations or cache requests for different
blocks can proceed independently

* Physically, the single controller interleaves
multiple operations on distinct blocks

— Though only one cache access or one bus access is
allowed at time,

— One operation may start before another finishes

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 27 . '
Elsevier Science

20

1. Write-through Invalidate Protocol

* Two states per block Ersj//--B .
rvvr usvvr
— Valid and Invalid

— As In an uniprocessor

* Any writes invalidate all PrRd / BusRd ' Buswir /-
other cached copies Prvr / BusWy |
— Can have multiple BT /-
simultaneous readers BusRd / -

— Write invalidates them

State Tag Data State Tag Data

PrRd: Processor Read
PrWr: Processor Write @

BusRd: Bus Read ¢ oo o ¢
BusWr: Bus Write ‘I_|_ﬁ“_|_L>
Mem I/O devices

© 2011 Patterson, Vu, Meyer; © 2007

Elsevier Science 21

ECSE 425, Fall 2011, Lecture 27

Now for Some Assumgtions

* One-level cache

* Bus transactions and memory operations are
atomic

* All phases of a transaction complete before the
next starts

* Processor waits for a memory operation to
complete before issuing the next

* Invalidations are applied during bus transactions

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 27 . '
Elsevier Science

22

Is the Two-state Protocol Coherent?

 The processor observes memory state by issuing
memory operations

* Writes are serialized in the order in which they
appear on the bus
— All writes go to bus, and are atomic
=> |nvalidations are applied to caches in bus order
 How to insert reads in this order?

— Important, since processors see writes through reads, so
determines whether write serialization is satisfied

— But read hits may happen independently and do not
appear on bus or enter directly in bus order

ECSE 425, Fall 2011, Lecture 27 © 2011 Patterson, Vu, Meyer; © 2007
Elsevier Science

23

Orderin

Py: —>®—>®—> ®\

Py: ®—> W
P,: ®—>®——>g‘ >
* Writes establish a partial order

* Read ordering is unconstrained
— Though shared-medium (bus) will order read misses

— Any order among reads between writes is fine,
as long as in program order for each processor

© 2011 Patterson, Vu, Meyer; © 2007

Elsevier Science 24

ECSE 425, Fall 2011, Lecture 27

Next Time

e More cache coherence!

© 2011 Patterson, Vu, Meyer; © 2007

ECSE 425, Fall 2011, Lecture 27 . '
Elsevier Science

25

