ECSE 425 Lecture 23:
Virtual Memory

H&P Appendix C

© 2011 Gross, Hayward, Arbel, Vu, Meyer
Textbook figures © 2007 Elsevier Science



Last Time

e Basic cache optimizations
— AMAT = Hit Time + Miss Rate x Miss Penalty
— Reducing the miss rate
— Reducing the miss penalty

— Reducing the time to hit

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

ECSE 425, Fall 2011, Lecture 23 © 2007 Elsevier Science



Todax

e Virtual Memory
— Appendix C.4

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

ECSE 425, Fall 2011, Lecture 23 © 2007 Elsevier Science



th Virtual I\/Iemorx?

* Original motivation: increase memory capacity
beyond the size of main memory

* The problem:

— If a program became too large to fit into memory...

* The pre-VM solution:

— Programmer divides the program into mutually
exclusive parts that each fit into main memory

— Programmer ensures the required data are loaded at
the appropriate time

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

ECSE 425, Fall 2011, Lecture 23 © 2007 Elsevier Science



Virtual Memory Basics

* With “virtual memory,” the disk is used as the
lowest level in the memory hierarchy
— Main memory stores a subset of pages
— Pages are moved in and out of memory by the OS

* The address space is usually much larger than the

capacity of main memory, or even of the disk
— E.g. 40-bit addresses => 24% ~ 1 x 102 addresses

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

ECSE 425, Fall 2011, Lecture 23 © 2007 Elsevier Science



Other Motivations for Virtual Memory

* Multitasking
— Each thinks it owns the entire memory space
— But many processes share the memory space
— Memory protection => processes can’t access each
others” memory
* Relocation
— A program can run anywhere in memory

— Virtual memory maps addresses generated by the
compiler to real addresses in memory or on disk

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

ECSE 425, Fall 2011, Lecture 23 © 2007 Elsevier Science



Cache vs. Virtual Memory

Parameter First-level cache Virtual memory
Block (page) size 16-128 bytes 4096-65,536 bytes
Hit time 1-3 clock cycles 100-200 clock cycles
Miss penalty 8-200 clock cycles 1M — 1M cycles
(access time) (6-160 clock cycles) (800K-8M clock cycles)
(transfer time) (2-40 clock cycles) (200K-2M clock cycles)
Miss rate 0.1-10% 0.00001-0.001%
Address mapping 25-45 bit physical address 32-64 bit virtual addr to

to 14-20 bit cache address 25-45 bit physical addr

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

ECSE 425, Fall 2011, Lecture 23 © 2007 Elsevier Science



Mapping Virtual to Physical Addresses

Physical
address

A

4K B

8K C
12K D Physical

main memory

Virtual memory

— 24K

e “paged out” pages
contiguous b (swap file)
Disk
D

A reference to a page
on disk => page fault

© 2007 Elsavier, Inc. All rights reserved.

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

ECSE 425, Fall 2011, Lecture 23 © 2007 Elsevier Science

8



Pages and Segments
* Chunks of memory are called pages or segments

Page Segment

Size Fixed Variable

Words per address One Two (segment and offset)

Programmer visible? Invisible to application May be visible to application
programmer programmer

Replacing a block Trivial Hard

Memory use inefficiency Internal fragmentation External fragmentation

Efficient disk traffic Yes Not always

* Hybrid approaches
— Paged segments: segments with n pages
— Multiple page sizes: e.g., from 1 KB to 4 MB

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

ECSE 425, Fall 2011, Lecture 23 © 2007 Elsevier Science



Four Memory Hierarchx Questions, rev. 2

* Block placement
— Miss penalty is huge! (1M to 10M cycles)

— Target lower miss rates at expense of implementing
more complex algorithms

— Virtual memory is fully associative strategy

* Block identification
— Translate from virtual addresses to physical addresses
— The mapping is stored in the page table
— The page table is stored in main memory
— Optimize address translation for the common case

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

2007 Elsevier Science 10

ECSE 425, Fall 2011, Lecture 23



Four Questions, rev. 2, Cont’d

* Block replacement
— Minimize page faults!
— LRU replacement
* Set “use bit” when a page is accessed

* O/S periodically clears them
* On replacement, find a page without the “use bit” set

* Write strategy
— Avoid writing to disk whenever possible
— Always use write-back (write-through is too slow)
— Set the “dirty bit” when a page is modified

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

ECSE 425, Fall 2011, Lecture 23 © 2007 Elsevier Science

11



Address Translation

* Virtual addresses map to physical addresses
— Page offset is concatenated to the page PA
— Segment offset is added to the segment PA

Virtual address

‘ Virtual page number ‘ Page offset I

Main
memory

Page
table

Yy

\

Physical address

© 2007 Elsavier, Inc. All rights reserved.

© 2011 Gross, Hayward, Arbel, Vu, Meyer;
ECSE 425, Fall 2011, Lecture 23 © 2007 Elsevier Science 12



Page Tables

* Page tables store the translation from VA to PA
— Indexed by the virtual page #

* Page tables are stored in main memory

— And can therefore be in the cache
e Each process gets a page table

* Page tables can be large
— E.g.: 32-bit VA, 4KB pages, 4 bytes per PTE
— Resulting page table is 232/21%2 x 22 = 2?2 or 4MB

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

© 2007 Elsevier Science 13

ECSE 425, Fall 2011, Lecture 23



Page Table for 32-bit VA, 512 MB of RAM

Page table register

Virtual address
31 30 29 28 27 ceccecrerroracannn 151413 12 11 10 9 8 c e 3210
Virtual page number Page offset
Valid Physical page humber
() ?
Page table
v \\18
If O then page is not
present in memory
29 28 27 seevesccnanneenes - 1514131211 1098-:]--- 3210
Physical page humber Page offset

Phvsical address

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

ECSE 425, Fall 2011, Lecture 23 © 2007 Elsevier Science

14



Fast Address Translation

* Paging: every LD requires two memory accesses
— One to read the page table to get the PA
— One to get the data
— Expensive!
* Principle of locality:
— Consecutive accesses are likely to the same page

— Why recalculate the address translation every time?

e Solution => cache recent translations
— Use a translation look-aside buffer (TLB)

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

ECSE 425, Fall 2011, Lecture 23 © 2007 Elsevier Science

15



Translation Lookaside Buffers gTLBz

e Just like a cache
— Tag: a portion of the virtual address

virtual address

— Data: physical page number

— Other utility fields: protection, valid, physical address

use, and dirty

e TLB sits “between” the CPU, L1
— On the critical path
— TLB speed influences cycle time

e Split L1? Two TLBs -

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

© 2007 Elsevier Science 16

ECSE 425, Fall 2011, Lecture 23



Hit Time Reduction

* Avoiding address translation while indexing cache
reduces hit time

— Take the TLB off the critical path

e Caches can be tagged and index using virtual or
physical addresses

* Hits are much more common than misses, so
— Use virtual addresses for caches
— Save on address translation time

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

ECSE 425, Fall 2011, Lecture 23 © 2007 Elsevier Science

17



th Not Virtuallx Indexed Caches?

* Protection must be enforced for every cache access
— This is usually done in the TLB
— Copy protection bits into the cache on TLB miss

e Cache must be flushed on every process switch
— Because different processes have different mappings of
physical addresses to virtual addresses
* Synonyms or aliases (two different virtual addresses
for the same physical address)

— If software modifies one in cache, the other is invalid

* |/O uses physical addresses

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

ECSE 425, Fall 2011, Lecture 23 2007 Elsevier Science

18



Virtually Indexed, Physically Tagged

* |Index into cache using part of the page offset

* While indexing, perform translation to match the
tag with the physical address

e Limits the size of direct-mapped caches
— Low-order bits must be equal in both VA and PA
— Cache must be no bigger than the page size

— Adding associativity allows caches to be larger (IBM
uses a 16-way cache)

2'ndex = Cache Size / (Block Size x Associativity)

© 2011 Gross, Hayward, Arbel, Vu, Meyer;
ECSE 425, Fall 2011, Lecture 23 2007 Elsevier Science 19



ExamEIe Memory Hierarchx

[ Virtual address <64> I

[ Virtual page number <51> | Page offset <13> ]

ITLB tag compare address <43> I TLB index <8> | I L1 cache index <7> lBlock offset <6> |

4l To CPU

TLB tag <43> TLB data <28>

L1 cache tag <43> L1 data <512>

l L1 tag compare address <28>

o Page Size: 8 KB | Physical address <41> |

e TLB: DM with 256 entries

° |_1: DM’ 8 KB | L2 tag compare address <19> | L2 cache index <16> | Block offset <6>|

e|2: DM, 4 MB i

e Caches use 64-byte blocks

L2 cache tag <19> L2 data <512>

e L1: Virtually indexed, physically tagged
e L2: Physically indexed and tagged

To L1 cache or CPU
© 2007 Elsevier, Inc. All rights resarved.

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

ECSE 425, Fall 2011, Lecture 23 © 2007 Elsevier Science

20



Summarx

* Virtual Memory Basics
— Automatic management of memory-disk swap

— Memory protection
— Program relocation

* Pages are swapped in and out of memory

* Page tables map virtual addresses to physical
addresses

* Making Virtual Memory Fast

— Translation Look-aside Buffer
— Virtually indexed, physically tagged caches

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

ECSE 425, Fall 2011, Lecture 23 © 2007 Elsevier Science

21



Next Time

e Limitations of ILP
— Read Chapter 3.1-3.3

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

ECSE 425, Fall 2011, Lecture 23 © 2007 Elsevier Science

22



