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Last Time

* Two Questions
— Q1: Block placement
— Q2: Block identification
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Todax

* Two more questions
— Q3: Block replacement
— Q4: Write strategy

e Performance of CPUs with cache
— Appendix C.2
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Q3: Block ReEIacement

* Which block should be replaced on a miss?
* Direct mapped—no choice!

— Index specifies the cache block for replacement
— Advantage: simple logic
— Disadvantage: higher miss rates

* Fully associative or set associative

— Several blocks to choose from
— Make good choices to reduce miss rates
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Three ReEIacement Strategies

e Random—simple!

e Least-Recently Used (LRU)

— Recently accessed blocks will likely be accessed again

— The converse is also true: blocks not recently
accessed are less likely to be accessed again

* True LRU is too expensive; estimate it
— E.g., record when items are accessed

e Firstin, first out (FIFO)
— Replace oldest block
— Another approximation of LRU
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Q4: Write Strategx

e Most cache accesses are reads
— All instruction accesses are reads

— MIPS: 10% stores, 26% loads

* Writes represent 7% of overall memory traffic
— 28% of traffic to the data cache

* Two conflicting design principles
— Make the common case fast: optimize for reads
— Amdahl’s law: don’t neglect writes
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Reads vs. Writes

* Reads are the easiest to make fast
— Read block at same time as tag check
— Discard data if tags don’t match
e Power is the only drawback
* Why are writes slow?
— Writes cannot begin until after tag check

— Writes can be of variable width
* Reads too; power is the only drawback of reading more
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Two Write Strategies
e Write back

— Write information only to block in the cache

— Write the modified cache block to the main memory
only when it is replaced

* Write through

— Write information to the block in the cache and
— Write to the block in lower-level memory
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Write Back

* Advantages:
— Writes occur at speed of cache

— Multiple writes to a block coalesced into one write to
main memory

* Reduces pressure on memory bandwidth
* Reduces power dissipated in the memory system

* “Dirty bit” kept for each block

— Indicates whether the block is “dirty” (modified while
in the cache) or “clean” (not modified)

— On replacement, “clean” blocks are discarded
— Only “dirty” blocks trigger writing to the next level
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Write Th rough

e Simple, easier to implement
* Cache is always clean

— Read misses never result in writes to lower level
— Main memory always has current data
— Reduces the complexity of cache coherency
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Stalling on Writes

* Avoid stalling on writes by using a write buffer
— Once data is written to the buffer, continue

 Loads must then check the write buffer for data

— If the data is cached, but the write is still buffered,
cache doesn’t contain the current value
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Two Write Miss Strategies

e Write allocate
— Make write misses act like read misses

— Retrieve the block, then proceed as if access was a hit

e No-write allocate

— Don’t retrieve the block: modify it directly in lower-
level memory instead

* Normally

— WB caches write allocate (benefit from locality)

— WT caches don’t write allocate (avoid redundant
writes to multiple levels of memory)
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Average I\/Iemorx Access Time

* Miss rate
— Accesses that miss / Total accesses
— Convenient metric
— Independent of the speed of the hardware

* A better measure Average Memory Access Time
— AMAT = HitTime + MissRate x MissPenalty
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ExamEIe: Unified vs. SEIit Caches

* |Instruction and data streams are different
— Instructions are fixed size and read-only

— Instruction stream is predictable

* Divide cache capacity between two caches

— An instruction cache (1S) accessed during IF
— A data cache (DS) accessed during MEM
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Example: Unified vs. Split Caches, Cont’d

16 KB IS and 16 KB DS vs. 32 KB US
— 16 KB IS has 3.83 misses per 1000 instructions
— 16 KB DS has 40.9 misses per 1000 instructions
— 32 KB US has 43.3 misses per 1000 instructions

* Assume
— 10% of instructions are stores
— 26% of instructions are loads
— 1 cycle hit time
— 100 cycle miss penalty
— 1 extra cycle penalty for US—structural hazard

* What is the AMAT in each case?
* Does miss rate predict AMAT?
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CPU Performance with ImEerfect Caches

 When caches are perfect ...
— CPUTime =1C x CPI,.... x CCTime

— One cycle of “hit” time is included in CPI___,

base

 When caches aren’t perfect, stalls!

R . MemorvStalls | .
CPUTime = 1C x| CPl . + L < CCTime
Instruction

- MemorvAccesses . . P
=1 x| CPl g + =i . Miss Rate < MissPenalty < CCTime

Instruction
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CPU Performance ExamEIe 1

* Assume
— In-order processor
— Miss penalty of 200 CC
— CPI =1 (when we ignore memory stalls)
— 1.5 memory accesses per instruction on average
— 30 misses / 1000 instructions

 Compare CPUTime with, and without cache
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Cache Impact on Performance

* As CPI decreases
— The relative penalty of a cache miss increases

* With faster clocks, a fixed memory delay yields
more stall clock cycles!

 Amdahl’s law states that
— If we decrease CPI,
— But average memory access time is fixed, then

— The overall speedup is limited by the fraction of time
spent computing relative to total execution time
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CPU Performance ExamEIe 2

* With a perfect cache * Direct mapped
— CPI=1.6 — Miss rate = 2.1%
— CC=0.35ns * 2-way set associative
— 1.4 mem refs / instruction — CC,.pyay = 1.35CCy,,,
* Compare two 128 KB — Miss rate = 1.9%
caches e What is CPUTime in each
— 64 bytes blocks case?
— Miss penalty = 65 ns * Does AMAT predict

— Hittime =1 cc CPUTime?

© 2011 Gross, Hayward, Arbel, Vu, Meyer;

© 2007 Elsevier Science 19

ECSE 425, Fall 2011, Lecture 21



AMAT is not CPU Time!

* |n the previous example:
— AMAT is lower for 2-way
— CPUTime is lower for 1-way
— Full simulation is the best predictor of performance

* 2-way set associative cache increases the clock
cycle for ALL instructions
— Slower ALU operations
— Slower hits (the common case)
— Degrades performance despite improving miss rate
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Out-of-Order Execution

* Miss penalty does not mean the same thing
— The machine does not totally stall on a cache miss
— Other instructions allowed to proceed

 What is the miss penalty for OOO Execution?

— Full latency of the memory miss? No
— The non-overlapped latency when the CPU must stall

e Define:
Because of O-O-E
MemorvStallCveles Misses . i 1 :
——— . — (] OtAIMsS Latency - OverlappedMissLatency)

Instruction Instruction



Summarx

* Block replacement * Performance with Caches
— Random, LRU, FIFO — Miss Rate

e Write strategy — Average Memory Access
— Write-back Time

— CPU Time
* OOO-E vs. I0-E

— Some of the miss penalty
can be overlapped

— Write-through

* Write misses
— Write allocate
— No-write allocate
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Next Time

* Basic cache optimizations
— Appendix C.3
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