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Last Time

* Multiple-issue Processors
— Static Superscalar
— VLIW
— Dynamic Superscalar
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Todax

* Advanced Techniques
— Instruction Delivery

— Speculation
— Chapter 2.9
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High Performance Instruction DeIiverx

* Delivering instructions becomes a bottleneck
— Especially in multiple-issue processors
— Handling branches is the most difficult
— Have to go beyond simple branch prediction

e 5-stage MIPS pipeline: branch target address and
branch condition (outcome) are known in ID
— One cycle branch delay

* Predictors don’t give much benefit for multiple-issue
pipeline unless they can predict in the IF stage

— Seems impossible: don’t even know the instruction yet!
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Store Targets in a Branch Target Buffer

e Table look up can be done in hardware for small tables
e Usually, only store predicted taken branches in BTB

PC of instruction to fetch
Look up Predicted PC

Number of
entries

in branch-
target
buffer

No: instruction is
> = not predicted to be Branch
branch; proceed normally predicted
taken or

Yes: then instruction is branch and predicted untaken
PC should be used as the next PC
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Branch Target Buffer

1. Hit? Yes. PrEdiCted Send PC to memory and
taken, and taken. [—;—I

— No penalty "
2. Hit? Yes. Predicted

Entry found in
branch-target
buffer?

taken, and not taken.

— 2 cycle penalty; update
BTB, restart fetching

3. Hit? No. Taken.

— 2 cycle penalty; update nstucton
BTB, restart fetching

Send out
predicted
PC

Is
instruction
a taken
branch?

Taken
branch?

!

. Enter Mispredicted branch, Branch correctly
4 . H It ? N O . N Ot ta ke n . branch instruction kill fetched instruction; predicted;
EX address and next restart fetch at other W continue execution
PC into branch- target; delete entry with no stalls
— Fall-through, no penalty argetuer | o arget utr
’ L]
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Don’t Store Targets, Store Instructions

* Next logical step: branch folding
— Buffer the predicted instruction, not its address

* Works perfectly for unconditional branches
— Eliminates them completely!

— Replaces the jump instruction directly with the target
instruction—a bonus cycle!
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Return Address Predictors

* For the procedure call instruction, the return PC
varies at run time

— Consider stdlib in C, or object functions in C++/Java

e Solution: store return addresses in a small buffer
— Save the 8-16 most recent return addresses

* On a function call, push the return address onto a
stack; on a return, pop

— If the function depth is no more than the size of the
buffer, perfect return address prediction
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Integrated Instruction Fetch Units

e Separate unit with separate control
— Runs independently of the pipeline

— Fetches instructions, predicts branches, provides
instructions to the datapath on demand

* Integrated branch prediction
— Predicts branches as instructions are fetched

* |nstruction prefetch
— Fetch runs ahead of execution
— Hides delay of cache misses
* |nstruction buffering
— Holds instructions for pipeline, providing them on request
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ExEIicit Renaming Register File vs. ROB

 When using an ROB, distributed architectural state; values
can be stored in
— Registers
— Reservation stations
— ROB - implicitly renames registers by ROB entry number

* |nstead of an ROB, use a huge register file
— More physical registers than architectural registers
— Explicitly rename registers
— Values only available from the register file
* Simplifies commit
— Indicate that physical register with temporary value now
represents an architectural register

— Indicate that the physical register holding the old value of the
architectural register is now free
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Summarx

* Advanced Predicted Techniques
— Branch Target Buffer—saves predicted PC, too
— Branch folding—saves the instruction instead

— Return address predictor—enables perfect prediction
when returning from function calls

* Advanced Instruction Delivery

— Integrated Instruction Fetch Units

* Advanced Speculation Techniques
— Renaming Register File

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 18 Vu, Meyer; © 2007 Elsevier Science

11



Review

e Standard FP Pipeline

* Tomasulo’s Algorithm

 Tomasulo’s Algorithm with Speculation

e Putting it all together: Intel P4 vs AMD Opteron
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Standard FP PiEeIine ghorizontalz
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ExEosing ILP in the Standard FP PiEeIine

* |In-order issue, out-of-order execution and
completion

e Static approaches only
— Fetch instructions based on branch prediction
— Loop unrolling

— Code scheduling
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Tomasulo’s Dvynamic Pipeline (vertical
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Exposing ILP for Dynamic Scheduling

* |In-order issue, out-of-order execution and
completion

* Static Techniques can still be applied
— E.g., loop unrolling is important for any architecture

* Dynamic scheduling removes hazards
— Register renaming eliminates name dependencies
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Speculative Pipeline (vertical
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Exposing ILP for Sgeculation

* |In-order issue, out-of-order execution, in-order
completion

e Speculation enables additional overlapping
— Execute instructions based on branch prediction
— Overlap basic blocks before branch resolution
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Intel Pentium 4
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Pentium 4 Features

* Deep pipeline: 31 cycles from fetch to retire

e 4K-entry Front-end BTB
— Predicts the next IA-32 instruction to fetch
— Only used when trace cache misses

e 12K-uop Trace Cache
e 128-entry Trace Cache BTB

* 128 registers
— Supporting 128 uops, including 48 loads, 32 stores

e 7 functional units
16 KB L1 data cache
2 MB L2 cache
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3.2 GHz P4, 2.6 GHz OEteron: CPI
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3.2 GHz P4, 2.6 GHz Opteron: SPECRatio
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Next Time

* Memory Hierarchy
— Read Appendix C.1

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 18 Vu, Meyer; © 2007 Elsevier Science

23



