ECSE 425 Lecture 17:
Multiple-lssue Processors

H&P Chapter 2

© 2011 Patterson, Gross, Hayward, Arbel, Vu, Meyer
Textbook figures © 2007 Elsevier Science

Last Time

* Limitations of Dynamic Scheduling
* Dynamic Scheduling with Hardware Speculation
 New pipeline stage, new hardware structure

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 17 Vu, Meyer; © 2007 Elsevier Science

Todax

* Multiple-issue processors

— Issue more than one instruction per cycle
— |deal CPI< 1

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 17 Vu, Meyer; © 2007 Elsevier Science

Issuing Multiple Instructions/Cycle

e Basic idea: parallel pipelines
— Fetch, issue, and complete multiple instructions per cycle

e Superscalar

— Schedule instructions so when possible, more than one
can issue at the same time

— Static (compiler) or dynamic (hardware) scheduling is
possible

* Very Long Instruction Words (VLIW)
— Instructions are grouped into fixed-width sets
— Sets are (generally) scheduled by the compiler
— Architecture determines the width of the set

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 17 Vu, Meyer; © 2007 Elsevier Science

IVIuItiEIe-Issue Processors

Common Issue Hazard Scheduling Distinguishing Examples
Name Structure | detection Characteristic
Superscalar | Dynamic | Hardware | Static In-order execution MIPS, ARM
(static) (mainly
embedded)

Superscalar | Dynamic | Hardware | Dynamic Some out-of-order None presently
(dynamic) execution (no

speculation)
Superscalar | Dynamic | Hardware | Dynamic with | Out-of-order execution | Intel P4, MIPS
(speculative) speculation with speculation R12K, IBM Power5
VLIW Static Mostly Static All hazards determined | C6X

Software and indicated by

compiler (often

implicitly)
EPIC Mostly Mostly Mostly static | Explicit dependences Itanium

static software marked by compiler

ECSE 425, Fall 2011, Lecture 17

© 2011 Patterson, Gross, Hayward, Arbel,

Vu, Meyer; © 2007 Elsevier Science

Static SuEerscaIar gSSQ Processor

e Superscalar MIPS: 2 instructions, 1 FP & 1 integer
— Fetch 64-bits/clock cycle; Int on left, FP on right
— Can only issue 2nd instruction if 1st instruction issues
— More ports for FP registers to do FP load & FP op in a pair

Type Pipe Stages

Int. instruction IF ID EX MEM WB

FP instruction |F D EX MEM WB

Int. instruction IF ID EX MEM WB

FP instruction |F ID EX MEM WB

Int. instruction |F ID EX MEM WB

FP instruction |F ID EX MEM WB

* 1 cycle load delay affects 3 instructions in SS
— Second instruction can’t use result, nor those in next slot

© 2011 Patterson, Gross, Hayward, Arbel, 6

ECSE 425, Fall 2011, Lecture 17 Vu, Meyer; © 2007 Elsevier Science

Remember the Unrolled Loop ...

Add a scalar to a vector

1 LO: L.D FO,0 (R1)

2 L.D F6,-8 (R1)

3 L.D F10,-16 (R1)

4 L.D F14,-24(R1)

5 ADD.D F4,F0,F2

6 ADD.D F8,6F6,F2

7 ADD.D F12,F10,F2

8 ADD.D F16,F14,F2

9 S.D F4,0 (R1)

10 S.D F8,-8 (R1)

11 DADDUI R1,R1,#-32

12 S.D F12,16(R1) ; 16-32 = -16
13 BNE R1,R2,L0

14 S.D F16,8(Rl) ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 17 Vu, Meyer; © 2007 Elsevier Science

Now with Static SuEerscaIar Issue

e Unroll the loop five times instead of four

e When we can issue one INT and one FP
operation, performance improves 46%

[nteger instruction [P instruction

Loop L.D F0,0(R1)
L.D F&,-8(R1)
L.D F10, -16 (R1) ADD.D F4,F0,F2
L.D F14,-24 (R1) ADD.D F8,F6,F2
L.D F18,-32 (R1) ADD.D F12,F10,F2
S.D F4,0(R1) ADD.D F16,F14,F2
S.D F8,-8(R1) ADD.D F20,F18,F2
S.D F12,-16 (R1)
DADDUI R1,R1,#-40
gﬁg gféé%g% 2.4 cycles per iteration
S.D F20,8(R1) 5 FP registers

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 17 Vu, Meyer; © 2007 Elsevier Science

Hazards in N-Wide Static SuEerscaIar

* |ssue packet: a group of instructions from IF that
could potentially issue simultaneously

e |f an instruction causes a hazard (structural or
data) due to
— An earlier instruction in execution or
— An earlier instruction in the issue packet,

e Then instruction is not issued

* As aresult, 0to N instructions issued per clock
cycle, for N-wide issue

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 17 Vu, Meyer; © 2007 Elsevier Science

Performance in Static Sugerscalar

* |ssue checks could limit clock cycle time
— Many comparisons required

— Issue stage usually split and pipelined
e 1st stage examines hazards within the packet

* 2nd stage examines hazards between the packet and
executing instructions

— Longer pipeline => higher branch penalties => greater
accuracy prediction needed
* Integer/FP split uses simple HW, hard to 0.5 CPI

— Programs need exactly 50% FP ops AND no hazards

© 2011 Patterson, Gross, Hayward, Arbel,
Vu, Meyer; © 2007 Elsevier Science

ECSE 425, Fall 2011, Lecture 17 10

VLIW

 Static superscalar processors
— Decide how many instructions to issue on-the-fly
— HW checks for dependencies
— Mostly limit to 2-issue

* VLIW checks dependencies in the compiler

— Construct an instruction packet with either no
dependencies or indicate if they are present

— Simpler hardware
— Re-compilation often required when HW changes

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 17 Vu, Meyer; © 2007 Elsevier Science

11

The VLIW ldea

 Multiple, independent functional units
 Compiler finds independent operations, packages
them together in a very long instruction word

— Eliminates expensive issue hardware in a superscalar

 VLIW machines tend to have issue widths > 4

— Static superscalar processors are especially expensive
for wide issue widths

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 17 Vu, Meyer; © 2007 Elsevier Science

12

VLIW ExamEIe

* 5-wide VLIW

— 1 integer operation (incl. branch) unit
— 2 FP op. units
— 2 memory ref. units

* Code must have enough parallelism to fill the
operation slots and keep the FUs busy

— Loop unrolling and code scheduling
* Local scheduling: straight-line codes

* Global scheduling: across branches, substantially
more complex (see trace scheduling)

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 17 Vu, Meyer; © 2007 Elsevier Science

13

Unrolled IooE examEIe for VLIW

Mem Ref 1 Mem Ref 2 FP op1 FP op2 Int. op/Branch

L.D FO,0(R1) L.D F&,-8(R1)}
L.D F10,-16(R1) L.D F14,-24(R1)
L.D F18,-32(R1) L.D F22,-24(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2
L.D F26,-32(R1) ADD.D F12,F10,F2 ADD.D Fl6,F14,F2
ADD.D F20,F18,F2 ADD.D F24,F22,F2
S.D F4,0(R1) S.D. F8,-8(R1) ADD.D F28,F26,F2
S.D F12,-16(R1) S.D Fl6,-24(R1) DADDUI R1,R1, #-56
S.D F20, 24 (R1) S.D F24,16(R1)
S.D F28,8(R1) ENE R1,R2Z,Loop

Unroll the loop seven rather than five times
— 23 operations in 9 clock cycles, or 2.5 operations / cycle
— 1.3 cycles per iteration, 83% faster than 2-wide SS!

* Low efficiency
— Instructions in 60% of available slots

— Large number of registers used, too

© 2011 Patterson, Gross, Hayward, Arbel,

Vu, Meyer; © 2007 Elsevier Science 4

ECSE 425, Fall 2011, Lecture 17

Issues with VLIW

* Increased code size
— Aggressively unroll loops, waste bits when packets are not full
— Can use clever encoding or compression to reduce code size

* Lock-step operation
— No hazard detection in hardware
— A stall in one FU stalls the whole processor
— Can’t predict cache misses: slows down all other instructions
— Recent processors relax this with extra HW
* Binary code compatibility
— Different pipelines, different code (e.g., more or different FUs)
— Object code translation (Crusoe: rapidly developing)
— Another solution: relax this approach (1A-64)

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 17 Vu, Meyer; © 2007 Elsevier Science

15

Dxnamic SuEerscaIar with SEecuIation

* Now put everything together
— Multiple issue
— Dynamic scheduling
— Speculation

© 2011 Patterson, Gross, Hayward, Arbel,

Vu, Meyer; © 2007 Elsevier Science 16

ECSE 425, Fall 2011, Lecture 17

Unrolled Loop ExamEIe Yet Again

Multiple Issue with Speculation
No speculation:

[ter. Instruction Issue Exec Mem Write CDB Comment
| LD R2,0(R1) | 2 3 4
| DADDIU R2,R2,#1 | 5 6 Wait for LD
| SD R2,0(R1) 2 3 7 Wait for DADDIU
| DADDIU R1,R1, -8 2 3 4 Executes directly
| ENE R1,R2,L 3 7 Wait for DADDIU
2 LD R2,0(R1) 4 8 9 w Wait for BNE
2 DADDIU R2,R2,#1 4 11 13 Etc.
2 SD R2,0(R1) 5 9 13
2> DADDIU R1,R1,-8 5 8 9
2 BNE R1,R2,L f 13
Speculation:
Iter. Instruction Issue Exec Read Write Commits Comment
Acces CDB
| LD R2,0(R1) I 2 3 4 5
| DADDIU R2,R2,#1 1 5 &) 7 Wait for LD
| SD R2, 0 (R1) 2 3 7 Wait for DADDIU
| DADDIU R1,R1, -8 2 3 4 8 Commit in order
| ENE R1,R2,L 3 7 8 Wait for DADDIU
2 LD R2,0(R1) 4 5 6 7 9 No delay
2 DADDIU R2,R2,#1 4 8 9 10) Etc.
2 SD R2,0(R1) 5 6 10)
2> DADDIU R1,R1,-8 5 6 7 11
2 BNE R1,R2,L 6 10 11

© 2011 Patterson, Gross, Hayward, Arbel,

Vu, Meyer; © 2007 Elsevier Science v

ECSE 425, Fall 2011, Lecture 17

Summarx

e Superscalar execution
— Issue and complete multiple instructions per cycle

e Static Superscalar
— Instructions issued in-order once hazards clear

* VLIW

— Generally wider than superscalar processors

— Multiple instructions packed by compiler for
simultaneous issue; no HW hazard detection

* Dynamic Superscalar
— Multiple issue, dynamic scheduling, speculation

© 2011 Patterson, Gross, Hayward, Arbel,

Vu, Meyer; © 2007 Elsevier Science 18

ECSE 425, Fall 2011, Lecture 17

Next Time

* Advanced Techniques

— Chapter 2.9

— Instruction delivery

— Speculation

ECSE 425, Fall 2011, Lecture 17

© 2011 Patterson, Gross, Hayward, Arbel,
Vu, Meyer; © 2007 Elsevier Science

19

