ECSE 425 Lecture 16:
Hardware Speculation

H&P Chapter 2

© 2011 Patterson, Gross, Hayward, Arbel, Vu, Meyer
Textbook figures © 2007 Elsevier Science

Last Time

* Dynamic Scheduling (Chapter 2.4 and 2.5)
— In-order issue
— Out-of-order execution
— Out-of-order completion

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 16 Vu, Meyer; © 2007 Elsevier Science

Todax

e Limitations of Dynamic Scheduling
— Limited overlapping of basic blocks
— Imprecise exceptions

 Hardware Speculation (Chapter 2.6)
— In-order issue
— QOut-of-order execution

— In-order completion

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 16 Vu, Meyer; © 2007 Elsevier Science

Dynamic Scheduling

* |In-order
— Fetch of instructions
— Issue of instructions to reservation stations

e Qut-of-order

— Dispatch to execution units
— Write-back

* When a branch is encountered
— Make a prediction
— Fetch and issue instructions
— Don’t dispatch until branch is resolved

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 16 Vu, Meyer; © 2007 Elsevier Science

Limitations of Dynamic Scheduling

* During branch resolution, can fetch and issue
instructions, but can’t execute them

* |f we allow instructions to execute, we risk

— Modifying processor state with instructions that
should not execute (violating data flow)

— Raising exceptions that would not be encountered
(violating exception behavior)

e So predict branches, but verify before continuing

* Branch prediction exposes some ILP, hides some
latency, but we can do better!

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 16 Vu, Meyer; © 2007 Elsevier Science

Dynamic Scheduling with SEecuIation

* Predict branches
— Often, make a series of predictions

* Assume the predictions are correct

— And allow instructions to speculatively execute

— Use speculative results to allow further speculation
* Misprediction?

— |Identify instructions that shouldn’t have executed

— Preserve data flow and exception behavior by
undoing their execution

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 16 Vu, Meyer; © 2007 Elsevier Science

Reguirements of Hardware SEecuIation

* Preserve data flow
— Violation means the program gets the wrong result
— Prevent state update from until branches are resolved

* Preserve exception behavior

— Violation means we raise exceptions that wouldn’t
otherwise occur

— Prevent exceptions until branches are resolved

* Bonus: precise exceptions

— If additionally exceptions aren’t raised until the
proper time, they are precise!

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 16 Vu, Meyer; © 2007 Elsevier Science

Requirements, Continued

 We need to be able to isolate speculative state
from committed state (which can’t be undone)

— Only commit state changes when we know they
definitely occur

* We want the results of speculative execution to
be available for further speculation
— To expose as much ILP as possible

* Solution: a new stage, and a new structure

— Speculative instructions wait to be committed, in-
order in the re-order buffer, which bypasses the RF

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 16 Vu, Meyer; © 2007 Elsevier Science

New Stage: Instruction Commit

* Execute out-of-order but commit in-order

— Prevents any irrecoverable action (state update, or
exception) until branches are resolved
* When a branch is resolved, dependent instructions
are no longer speculative
— Correct prediction? Instructions can write regs/mem
— Misprediction? Flush instructions, re-start instruction
fetch at the correct target instruction
* Instructions may finish execution considerably
before they are ready to commit

e Commit when the result is ready, and all earlier
instructions have committed

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 16 Vu, Meyer; © 2007 Elsevier Science

New Structure: Re-order Buffer gROBz

* Re-order buffer holds uncommitted results
— CBD writes to RS and ROB, not RF
— RF is updated only when the instruction commits
— ROB also replaces the store buffers
— Memory is updated only when stores commit

 The ROB forwards to speculative instructions

— Takes over the role of register renaming from the
reservation stations (RS)

e RS still buffers instr. between issue and execution

© 2011 Patterson, Gross, Hayward, Arbel,

Vu, Meyer; © 2007 Elsevier Science 10

ECSE 425, Fall 2011, Lecture 16

From instruction unit

Reorder buffer

; Reg #V y Data
Instruction]
queue
FP registers
Load-store
operations R
Y : . Operand -
Address unit Floating-point buses
operations]
Load buffers]
Y
Operation bus
Y Y \ i
Store 3 5
address 2 Reservation]
Store » 1 stations
data y v Address
Memory unit FP adders

ECSE 425, Fall 2011, Lecture 16

Common data bus (CDB)

© 2011 Patterson, Gross, Hayward, Arbel,
© 2003\ Eisevigr-Scienve(USAYAdl rightsreserved.

11

SEecuIative Tomasulo Algorithm

1. Issue—get instruction from Op Queue
— Checks for structural hazards

— If reservation station and reorder buffer slot free, issue instr & send
operands & reorder buffer no. for destination

2. Execution—operate on operands (EX)
— Checks for data hazards

— When both operands are ready, execute
— Not ready? Watch CDB for result

3. Write result—finish execution (WB)

— Write to CDB, to all waiting FUs & reorder buffer
— Release the reservation station

4. Commit—update register with reorder result

— When instr. at head of reorder buffer & result present, update RF
(or store to memory) and release reorder buffer entry

— Mispredicted branch flush reorder buffer

© 2011 Patterson, Gross, Hayward, Arbel,

Vu, Meyer; © 2007 Elsevier Science =

ECSE 425, Fall 2011, Lecture 16

Reorder Buffer

ROB

Entry Busy Instruction State Dest Value

1 no L.D. F6,34(R2) Commit Fé Mem[34+Regs[R2]]
2 yes MUL.D FO,F6,F4 Write result FO #1 x Regs[F4]

3 yes DIV.D F10,FO,F6 Execute F10

Reservation stations

Name |Busy | Op Vj Vk Q) |[Qk |Dest | A
Multl | no MUL.D Mem[34+Regs[R2]] Regs[F4] #2

Mult2 | yes DIV.D Mem[34+Regs[R2]] | #2 #3

FP Register Status

Field FO |F1 |F2 F3 F4 F5 Fé6 F7 F8 Fo F10
Reorder # | 2 3
Busy yes |no |no no no no no no no no yes

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 16 Vu, Meyer; © 2007 Elsevier Science

13

What about Precise InterruEts?

* Tomasulo’s Algorithm
— In-order issue
— Out-of-order execution
— Out-of-order completion
— Imprecise exceptions

 ROB gives us a mechanism for providing precise
exceptions

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 16 Vu, Meyer; © 2007 Elsevier Science

14

When Sgeculation is Wrong

* HW speculation guesses which branch to take
* Guess right?
— Commit the instructions that follow the branch

— Until the next speculative branch is encountered

* Guess wrong?

— Don’t commit the instructions that follow—

* Instead, free all later ROB entries
— And then re-start execution from correct branch

* What does this mean for exceptions?

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 16 Vu, Meyer; © 2007 Elsevier Science

15

Precise ExceEtions and SEecuIation

* When an instruction requires exception handling:
— Modify a status register in the ROB entry

— Wait until the instruction is to commit to give control
to the exception handler

e Unspeculative instruction?

— Exception is raised at commit and only earlier
instructions have committed: precise exception

e Speculative instruction?

— Instruction never commits, exception is flushed with
the instruction: correct exception behavior

© 2011 Patterson, Gross, Hayward, Arbel,

Vu, Meyer; © 2007 Elsevier Science 16

ECSE 425, Fall 2011, Lecture 16

Add-scalar-to-vector examEIe

Entry | Busy Instruction State Destination Value
I no L.D FO,0(R1) Commit FO Mem [0+Reg [R1]]
> |no ADD.D F4,F0,F2 Commit F4 41°* Reg[F2)]

3 Ves S.D F4,0(R1) Write result 0+Reg [R1] #2

| ves DADDIU R1,R1,-8 Write result R Regs[R1] -8
5 ves BNE R1,R2,L Write result

6 ves L.D FO,0(R1) Write result FO Mem|[#4]

7 ves ~ ADD.D F4,FO,F2 Write result F4 46 * Reg[F2]
8 ves S.D F4,0(R1) Write result O+#4 #7

9 ves ~ DADDIU R1,R1,-8 Write result R1 #4 - 8

10 Ves BNE R1,R2,L Write result

 Two complete loops issued
— First two instructions have committed, freeing ROB

* If BNE is mispredicted, following instructions never commit

* |In essence, ROB executes in-order a simplified version of original codes
— At this point, all results are ready

— Actual computation was done speculatively

ECSE 425, Fall 2011, Lecture 16

© 2011 Patterson, Gross, Hayward, Arbel,
Vu, Meyer; © 2007 Elsevier Science

17

Summarx

* Limitations of Dynamic Scheduling
— Limited overlapping of adjacent basic blocks
— Imprecise exceptions

* Dynamic Scheduling with Hardware Speculation
— Not only predict branches, assume correct prediction

* New pipeline stage, new hardware structure

— ROB: takes over renaming, holds results until it is safe to
modify processor state

— Instruction commit: results are committed in order, but
forwarded to speculative instructions

e Speculation = greater ILP, and precise exceptions
— CPIl approaching the ideal, 1!

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 16 Vu, Meyer; © 2007 Elsevier Science

18

Next Time

* Multiple-Issue Processors
— Chapters 2.7 and 2.8

ECSE 425, Fall 2011, Lecture 16

© 2011 Patterson, Gross, Hayward, Arbel,
Vu, Meyer; © 2007 Elsevier Science

19

