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Last Time

* Limits of pipeline performance
* Pipeline hazards

* Hazard mitigation
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Todax

* Hazards
— Branch Hazards

* Implementing Pipelining
— Pipeline Control
— Managing Branches
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Branch Hazards

* Caused by branch instructions
— Now the consuming stage is always IF
— Can cause greater performance loss than data hazards

* |f branch is taken

— The value of the PC is determined later in the pipeline

* If the branch is not taken
— PC is the next value (fall-through instruction)

e Performance losses due to branches
— We don’t determine an instruction is a branch until ID
— We don’t determine where the branch goes until EX
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Reducing Branch Penalties

* Waiting until EX to determine branch target
— Two cycle delay imposed by each branch instruction!
— What is the resulting performance loss?

* Assuming an ideal CPI of 1, we can measure
speedup with branch penalties as:

P1peDepth
1 +BranchFrequency xBranchPenalty

SpeedUpPipe =

* To reduce the penalty
— Move branch resolution to ID stage
— Branch prediction
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Flush gor freeze! the EiEeIine

* Once branch is detected and resolved in ID, re-
fetch destination instructions

* Fixed branch penalty (1 cycle per branch)
— What is the resulting performance loss?

Resolve branch at end of ID
so fetch next instruction here

Flush this instruction

Branch instruction WB

Branch successor ( ID EX MEM WB
Branch successor + | N~ ~— ID  EX MEM
Branch successor + 2 [F ID EX

e
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Predicted-not-taken

* Only slightly more complicated than flushing

* Proceed as if branch is not taken
— Re-fetch instruction only if the branch is taken

* No state changes until branch outcome is known

Untaken branch instruction IF ID EX MEM WB

Instruction / + 1 [F ID EX MEM WB

Instruction i + 2 [F ID EX MEM WB

Instruction i/ + 3 IF ID EX MEM WB
Instruction i + 4 IF ID EX MEM WB
Taken branch instruction IF ID EX MEM WB

Instruction i + 1 IF idle idle idle idle

Branch target [F ID EX MEM WB

Branch target + 1 IF ID EX MEM WB
Branch target + 2 IF ID EX MEM WB
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Predicted-taken

* Fetch and execute target instruction as soon as
branch is decoded and target address is known

— In processors with complex branch conditions, branch
target may be known before branch outcome
 Compiler profiling can help
— Make the common case fast

— Organize code to so the most frequent execution path
benefits from hardware branch prediction schemes
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Delaxed branch

* Allow one or more instructions following the
branch to execute even if the branch is taken

* Rely on the compiler to schedule code

— Compiler finds instructions to fill in after branch
— In a five-stage pipeline, find one independent instr.

branch instruction
sequential successor < Branch Delay Slot
branch target if taken
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Scheduling Delaxed Branches

(a) From before (b) From target (c) From fall-through
DADD R1, R2, R3 DADD R1, R2, R3
DSUB R4, R5, R6 =<
if R2 = 0 then ——— if R1 =0 then
Delay slot DADD R1, R2, R3 Delay slot
it R1=0then ——— OR R7, R8, R9
De'ay slot DSUB R4, RS, R6 —

becomes becomes becomes
DSUB R4, R5, R6 DADD R1, R2, R3
if R2 = 0 then ——— ) if R1 =0 then
DADD R1, R2, R3 DADD R1, R2, R3 OR R7, R8, R9
if R1 =0 then
DSUB R4, R5, R6 DSUB R4, R5, R6 <—
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Branch Erediction Eerformance

 Example: MIPS R4000, an 8-stage integer pipeline
— 3 pipeline stages before branch-target address known

— 1 additional cycle before branch condition is evaluated (if
there is no stall waiting on the register for comparison)

Penalties
Scheme Unconditional Untaken Taken
Flush 2 3 3
Predicted-taken 2 3 2
Predicted-untaken 2 0 3
* Find the CPIl degradation due to branches assuming
— Unconditional branch 4%
— Conditional branch, untaken 6%
— Conditional branch, taken 10%
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Basic MIPS pi

eline implementation
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ImEIementing Hazard Detection

* Detect data hazards during ID
— Stall the instruction before it is issued

— Insert pipeline bubbles (no-ops) by changing control
fields to Os (DADD RO, RO, RO)

e Early detection of interlocks (e.g., due to a load)
reduces complexity

e Detect load interlock by comparing:

— Source registers in IF/ID (consumers) with

— Destination register in ID/EX (producer)
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ImEIementing Forwarding

* Determine forwarding at the start of EX, MEM stages

* Compare
— Destination registers in EX/MEM and MEM/WB with
— Source registers in ID/EX and EX/MEM

* FO r'wa rd | N g e |
— from EX/MEM, MEM/WB r :
— to ALU, data memory, zero

detection units

* Additional logic is needed
to select among inputs
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Branches in the PiEeIine

* Resolve branches during ID
e Consider the cases BEQZ and BNEZ

— Move zero test to ID cycle
— Compute the branch-target address during ID (adder)
— One clock-cycle stall on branches (instead of two!)

e Doesn’t work for other branches

— BEQ and BNE test two registers
— Branch requires more cycles in these cases
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Dealing with branches in the

ipeline
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Summarx

* Branch Hazards
— Branch resolution stalls the pipeline

* Mitigate branch delays by
— Resolving during ID—requires additional hardware
— Branch prediction

* Implementing Pipeline Control

— Detect hazards by comparing register fields in
pipeline registers

— Forwarding requires additional hardware
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Next Time

* Exceptions

* Multi-cycle operations

* Superpipelining
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