ECSE 425 Lecture 8:
Branch Hazards;
Pipeline Implementation

H&P Appendix A

© 2011 Patterson, Gross, Hayward, Arbel, Vu, Meyer
Textbook figures © 2007 Elsevier Science

Last Time

* Limits of pipeline performance
* Pipeline hazards

* Hazard mitigation

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 8 Vu, Meyer; © 2007 Elsevier Science

Todax

* Hazards
— Branch Hazards

* Implementing Pipelining
— Pipeline Control
— Managing Branches

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 8 Vu, Meyer; © 2007 Elsevier Science

Branch Hazards

* Caused by branch instructions
— Now the consuming stage is always IF
— Can cause greater performance loss than data hazards

* |f branch is taken

— The value of the PC is determined later in the pipeline

* If the branch is not taken
— PC is the next value (fall-through instruction)

e Performance losses due to branches
— We don’t determine an instruction is a branch until ID
— We don’t determine where the branch goes until EX

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 8 Vu, Meyer; © 2007 Elsevier Science

Reducing Branch Penalties

* Waiting until EX to determine branch target
— Two cycle delay imposed by each branch instruction!
— What is the resulting performance loss?

* Assuming an ideal CPI of 1, we can measure
speedup with branch penalties as:

P1peDepth
1 +BranchFrequency xBranchPenalty

SpeedUpPipe =

* To reduce the penalty
— Move branch resolution to ID stage
— Branch prediction

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 8 Vu, Meyer; © 2007 Elsevier Science

Flush gor freeze! the EiEeIine

* Once branch is detected and resolved in ID, re-
fetch destination instructions

* Fixed branch penalty (1 cycle per branch)
— What is the resulting performance loss?

Resolve branch at end of ID
so fetch next instruction here

Flush this instruction

Branch instruction WB

Branch successor (ID EX MEM WB
Branch successor + | N~ ~— ID EX MEM
Branch successor + 2 [F ID EX

e

© 2011 Patterson, Gross, Hayward, Arbel,

Vu, Meyer; © 2007 Elsevier Science 6

ECSE 425, Fall 2011, Lecture 8

Predicted-not-taken

* Only slightly more complicated than flushing

* Proceed as if branch is not taken
— Re-fetch instruction only if the branch is taken

* No state changes until branch outcome is known

Untaken branch instruction IF ID EX MEM WB

Instruction / + 1 [F ID EX MEM WB

Instruction i + 2 [F ID EX MEM WB

Instruction i/ + 3 IF ID EX MEM WB
Instruction i + 4 IF ID EX MEM WB
Taken branch instruction IF ID EX MEM WB

Instruction i + 1 IF idle idle idle idle

Branch target [F ID EX MEM WB

Branch target + 1 IF ID EX MEM WB
Branch target + 2 IF ID EX MEM WB

ECSE 425, Fall 2011, Lecture 8

© 2011 Patterson, Gross, Hayward, Arbel,
Vu, Meyer; © 2007 Elsevier Science

7

Predicted-taken

* Fetch and execute target instruction as soon as
branch is decoded and target address is known

— In processors with complex branch conditions, branch
target may be known before branch outcome
 Compiler profiling can help
— Make the common case fast

— Organize code to so the most frequent execution path
benefits from hardware branch prediction schemes

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 8 Vu, Meyer; © 2007 Elsevier Science

Delaxed branch

* Allow one or more instructions following the
branch to execute even if the branch is taken

* Rely on the compiler to schedule code

— Compiler finds instructions to fill in after branch
— In a five-stage pipeline, find one independent instr.

branch instruction
sequential successor < Branch Delay Slot
branch target if taken

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 8 Vu, Meyer; © 2007 Elsevier Science

Scheduling Delaxed Branches

(a) From before (b) From target (c) From fall-through
DADD R1, R2, R3 DADD R1, R2, R3
DSUB R4, R5, R6 =<
if R2 = 0 then ——— if R1 =0 then
Delay slot DADD R1, R2, R3 Delay slot
it R1=0then ——— OR R7, R8, R9
De'ay slot DSUB R4, RS, R6 —

becomes becomes becomes
DSUB R4, R5, R6 DADD R1, R2, R3
if R2 = 0 then ———) if R1 =0 then
DADD R1, R2, R3 DADD R1, R2, R3 OR R7, R8, R9
if R1 =0 then
DSUB R4, R5, R6 DSUB R4, R5, R6 <—

© 2007 Elsavier, Inc. All rights resarved.

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 8 Vu, Meyer; © 2007 Elsevier Science

10

Branch Erediction Eerformance

 Example: MIPS R4000, an 8-stage integer pipeline
— 3 pipeline stages before branch-target address known

— 1 additional cycle before branch condition is evaluated (if
there is no stall waiting on the register for comparison)

Penalties
Scheme Unconditional Untaken Taken
Flush 2 3 3
Predicted-taken 2 3 2
Predicted-untaken 2 0 3
* Find the CPIl degradation due to branches assuming
— Unconditional branch 4%
— Conditional branch, untaken 6%
— Conditional branch, taken 10%
ECSE 425, Fall 2011, Lecture 8 © 2011 Patterson, Gross, Hayward, Arbel,

Vu, Meyer; © 2007 Elsevier Science H

Basic MIPS pi

eline implementation

IF/1ID ID/EX EX/MEM
4
M
B Branch
taken
x ™ Zero? > —
Rs.10
= PC IR =/M\
) 11.15 u
Instruction| IR _I : - S
memory MEM/WE.IR Registers X > ALU ¢
M
— u -
" I i .
. \1\6= Sign- 32
extend

Data
memory

MEM/WB

ECSE 425, Fall 2011, Lecture 8

© 2007 Elsavier, Inc. All rights resarved.

© 2011 Patterson, Gross, Hayward, Arbel,

Vu, Meyer; © 2007 Elsevier Science

12

ImEIementing Hazard Detection

* Detect data hazards during ID
— Stall the instruction before it is issued

— Insert pipeline bubbles (no-ops) by changing control
fields to Os (DADD RO, RO, RO)

e Early detection of interlocks (e.g., due to a load)
reduces complexity

e Detect load interlock by comparing:

— Source registers in IF/ID (consumers) with

— Destination register in ID/EX (producer)

© 2011 Patterson, Gross, Hayward, Arbel,

Vu, Meyer; © 2007 Elsevier Science 3

ECSE 425, Fall 2011, Lecture 8

ImEIementing Forwarding

* Determine forwarding at the start of EX, MEM stages

* Compare
— Destination registers in EX/MEM and MEM/WB with
— Source registers in ID/EX and EX/MEM

* FO r'wa rd | N g e |
— from EX/MEM, MEM/WB r :
— to ALU, data memory, zero

detection units

* Additional logic is needed
to select among inputs

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 8 Vu, Meyer; © 2007 Elsevier Science

Branches in the PiEeIine

* Resolve branches during ID
e Consider the cases BEQZ and BNEZ

— Move zero test to ID cycle
— Compute the branch-target address during ID (adder)
— One clock-cycle stall on branches (instead of two!)

e Doesn’t work for other branches

— BEQ and BNE test two registers
— Branch requires more cycles in these cases

© 2011 Patterson, Gross, Hayward, Arbel,
Vu, Meyer; © 2007 Elsevier Science

ECSE 425, Fall 2011, Lecture 8 15

Dealing with branches in the

ipeline

ECSE 425, Fall 2011, Lecture 8

o (o) 2 |

Y

e @ ~ o -

: :
< Branch resolving logic
ID.
ADD
IFAD - EX/MEM
< > Zero? [
| M \
)
X /
IReJo _
= PC
IRH..TS
Instruction | IR I . e -
memory | MEM/WB.IR | Registers & &
= Data
memory

MEM/WB

\

© 2007 Elsavier, Inc. All rights resarved.

© 2011 Patterson, Gross, Hayward, Arbel,
Vu, Meyer; © 2007 Elsevier Science

16

Summarx

* Branch Hazards
— Branch resolution stalls the pipeline

* Mitigate branch delays by
— Resolving during ID—requires additional hardware
— Branch prediction

* Implementing Pipeline Control

— Detect hazards by comparing register fields in
pipeline registers

— Forwarding requires additional hardware

© 2011 Patterson, Gross, Hayward, Arbel,

ECSE 425, Fall 2011, Lecture 8 Vu, Meyer; © 2007 Elsevier Science

17

Next Time

* Exceptions

* Multi-cycle operations

* Superpipelining

ECSE 425, Fall 2011, Lecture 8

© 2011 Patterson, Gross, Hayward, Arbel,
Vu, Meyer; © 2007 Elsevier Science

18

