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Last Time

* Processor Performance Equation
e System performance
* Benchmarks
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Today

* Pipelining Basics

e RISC Instruction Set Architecture
* Unpipelined RISC Implementation
* First glance: Pipelining RISC
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What is PiEeIining?

e Consider the time needed (gate delays) to execute
an instruction

— The time between two clock edges

Latch drives inputs
D D Latch captures result

Combinatorial circuit delay

— While early gates switch, later gates idle: inefficient.

* Divide the work into stages and add a register after
each stage:

I I I I

* Efficiency improves if each stage is always working
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PiEeIining Basics

* |Instructions advance through the stages in sequence
— Instruction are “committed” as they leaves the last stage

e Each stage simultaneously works on different
instructions

— n pipline stages = n concurrent instructions!

Inst1 —stagel Instl—stage2 Instl-—stage3

I i i i

Inst2—stagel Inst2-—stage2 Inst2—stage3

Inst 3—stage1l Inst3—stage2 Inst3—stage3

LI LI
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|deal PiEeIining

Time per instruction unpipelined

Time per instruction = —
# pipeline stages

* Pipelining reduces either:

— the average execution time per instruction, or

— the number of cycles required for execution (CPI)

* |deally, all stages have the same delay (balanced)
— Cycle time is determined by the longest stage

e |deally, throughput increases by n when
employing n pipeline stages
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PiEeIining is Not Ideal

Reality: overheads and hazards result in trade-offs

* New sources of overhead

— Pipeline registers add delay

— Pipeline stages can’t be balanced perfectly
* Hazards

— Structural: instructions may contend for resources

— Data: instructions may depend on each other for inputs

— Control: current instruction may determine the next
* Increased memory traffic

— Fetch instructions

— Load or store data
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Review: RISC Instruction Set

* Reduced Instruction Set Computing
— Simple ISA designed for efficient pipelining
— All operations on data modify registers
— Only memory operations are loads and stores
— Instructions typically have one size

* Three basic instruction classes
— Load and store
— ALU operations
— Branch and jump
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Review: RISC Instruction Classes

 Load and store
D R1, 30(RO)
' D R2, 100(RO)

ST R3, 200(RO)

* ALU operations
— ADD R3,R1,R2

* Branch and jump
BNEZ R3, target

I-type instruction
6 5 5 16

Opcode rs rt Immediate

Encodes: Loads and stores of bytes, half words, words,
double words. All immediates (rt = rs op immediate)

Conditional branch instructions (rs is register, rd unused)
Jump register, jump and link register
(rd = 0, rs = destination, immediate = 0)

R-type instruction
6 5 5 5 5 6

Opcode rs rt rd shamt funct

Register-register ALU operations: rd = rs funct rt

Function encodes the data path operation: Add, Sub, . ..

Read/write special registers and moves

J-type instruction
6 26

Opcode Offset added to PC

Jump and jump and link
Trap and return from exception
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For More Information

 We'll use MIPS RISC throughout the course

e See Appendix B for more information
— Refer to Figures B.22-B.25 in particular
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UnEiEeIined RISC
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UnEiEeIined RISC: Instruction Fetch

IF ID EX | MEM | WB
1. Instruction Fetch (I

UL
'

IR €< Mem[PC];
PC & PC + 4;

— Send PC to memory to fetch the current instruction
— Update PC
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UnEiEeIined RISC: Instruction Decode

IF ID EX | MEM | WB
2. Instruction Decode / Register Fetch (ID)

A < Regs|rs];
B < Regs|rt];
Imm < sign-extended immediate field of IR;

— Decode instruction and read registers
— Sign-extend immediate value
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UnEiEeIined RISC: Execution

IF ID EX MEM WB
3. Execution (EX)

— ALU operates on the operands prepared in ID stage
* Memory op: form effective address

— ALUOutput €< A + Imm;
* Reg-Reg ALU op:

— ALUOutput < A op B;
* Reg-Imm ALU op:

— ALUOutput €A op Imm;
* Branch:

— ALUOutput € NPC + (Imm << 2);
— Cond €< (A ==0)
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UnEiEeIined RISC: Memory Access

IF ID EX MEM WB
4. Memory Access (MEM)

PC < NPC;
Load:

LMD < Mem[ALUOutput];
Store:

Mem[ALUOutput] < B;
Branch:

If (cond) PC < ALUOutput;

— Load: read from the effective address in memory
— Store: write register value to the effective address
— Branch: update PC if the condition bit is set
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UnEiEeIined RISC: Write-back

IF ID EX MEM | WB
5. Write-back (WB)

Reg-Reg ALU:

Regs[rd] €< ALUOutput;
Reg-Imm ALU:

Regs[rt] < ALUOutput;
Load:

Regs[rt] < LMD;

— Reg-X ALU or Load: write the result into the register file
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UnEiEeIined RISC: Summary

* Execution times without pipelining
— Branches and stores: 4 cycles
— Others: 5 cycles

e Typical instruction mix

— Branches and stores 22%
— Others: 78%

 What is the CPI of this unpipelined RISC
processor?
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Basic MIPS RISC Pipeline
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Pipelining: Many Data Paths in One

Time (in clock cycles)

CC1 cCc2 CC4 CCs CC6

Program execution order (in instructions)
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SuEEorting PiEeIining

* Pipelining requires more memory bandwidth

— Simultaneously fetch instructions (IF), access data
(MEM)

— Cache instructions and data in separate memories

* Pipelining requires more register file bandwidth
— Simultaneously read (ID) and write (WB) registers
— Write in the first half CC, read in the second half

* Pipelining requires extra registers to store
intermediate results
— Additional state requires additional power, area, etc.
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Summarx

* |deal pipelining: divide work into n stages to increase
throughput by n times!

* RISC Instruction Set
— Small set of simple operations
— |deal for applying pipelining
* Unpipelined RISC implementation
— |F, ID, EX, MEM, WB
* |deal pipelining requires more
— Memory bandwidth

— Register file bandwidth
— Architectural state
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Next Time

* Basic pipeline performance issues

* Pipeline hazards
— Structural
— Data
— Control

* Hazard mitigation
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