ECSE 425 Lecture 2: Trends in Computer Architecture

H&P, Chapter 1

Administrative Matters

- Tutorial
 - Fridays, 3:35-4:25 PM, TR 0060
- Homework 1
 - Out today
 - WebCT
 - http://www.info425.ece.mcgill.ca
 - Due in class 9/19

Today

- Trends in Processor Performance
- Defining computer architecture
- Technology Trends
 - Bandwidth vs. Latency
 - Transistor and wire scaling
 - Power

Trends in Processor Performance

What Made This Improvement Possible?

- From 1986 to 2002, improvements in
 - Process technology (how computers are fabricated)
 - Computer architecture (how computers are designed)
 - Compilers (how software is prepared for computers)
- Architecture in this era: RISC
 - A few, simple instructions
 - Exploit instruction-level Parallelism (ILP)
 - Hide memory latency with multi-level cache hierarchy

What Happened in 2002?

- Since 2002, 20% / year; new challenges include
 - Power ⇒ temperature ⇒ reliability
 - Related limits in the ILP that can be exposed
 - Memory latency and bandwidth "wall"
- Architecture now: multi-processors
 - Integrate many, less complex processors on a chip
 - Exploit thread-level parallelism (TLP)
 - Exploit data-level parallelism (DLP)

What is Computer Architecture?

- Computer architecture is the art and science of
 - selecting hardware components, and
 - interconnecting hardware components, in order to
 - satisfy application requirements.
- Three aspects of computer architecture
 - Instruction set architecture (ISA)
 - Computer organization
 - Computer hardware

-Specification -Implementation

Instruction Set Architecture (ISA)

- An ISA is a contract between
 - Software developers, and
 - Hardware designers
- The ISA defines ...
 - Functional behavior of a processor
 - HW interface exposed to software
- The ISA typically includes ...
 - Assembly language definition
 - Programming model
- Examples of ISAs
 - 80x86, ARM, MIPS64, PowerPC, SPARC

Implementing an ISA

- Now, implementation >> ISA design
 - Computer organization
 - Computer hardware
- Organization (a.k.a., micro-architecture)
 - Pipelining, functional unit mix, memory hierarchy, branch prediction, etc.
- Example: AMD Opteron 64 and Intel Pentium 4
 - Same ISA, different organizations
 - Opteron: 12 stage int pipe, 1 MB L2
 - P4: 20 stage int pipe, Hyper-Threading™, 512 KB L2

Computer Hardware

- Logic design and packaging
 - Manufacturing technology
 - Circuit design strategy
 - Memory interface
- Has implications for
 - Clock rate
 - Power dissipation
 - Die area
 - Cooling requirements
- Example: Pentium 4, Mobile Pentium 4
 - Same organization, with different target applications

Architecture in Context

- Recall that computer architecture is
 - Instruction set architecture
 - Computer organization
 - Computer hardware
- An ISA may be used for decades (x86)
 - Future-proof your architecture!
- Architects must therefore be aware of trends in
 - Use: what do users want
 - Technology: what can hardware do

Trends in Computer Architecture

- Trends in Technology
 - Performance: bandwidth vs. latency
 - Transistor and wire scaling
- Trends in Power
- Trends in Cost
- Trends in Reliability
 - This is my area of research

Trends in Technology

- Technologies that impact architecture:
 - Logic manufacturing technology

Transistor Density: ~ 35% / yr

• Die size: ~ 10-20%

transistors per chip: ~ 40-55%

Memory (DRAM) manufacturing technology

• Capacity ~ 40%

Storage technology

Magnetic disk density ~ 30% (since 2004)

Network technology

Disk: 3600, 5400, 7200, 10000, 15000 RPM

– (8x, 143x)

- Memory: 16bit plain DRAM, Page Mode DRAM, 32b, 64b, SDRAM, DDR
 – (4x,120x)
- Disk: 3600, 5400, 7200, 10000, 15000 RPM
 - -(8x, 143x)

- Ethernet: 10Mb, 100Mb, 1000Mb, 10000 Mb/s
 - -(16x,1000x)
- Memory: 16bit plain DRAM, Page Mode DRAM, 32b, 64b, SDRAM, DDR
 – (4x,120x)
- Disk: 3600, 5400, 7200, 10000, 15000 RPM
 - -(8x, 143x)

- Processor: '286, '386, '486, Pentium, Pentium Pro, Pentium 4
 - -(21x,2250x)
- Ethernet: 10Mb, 100Mb, 1000Mb, 10000 Mb/s
 - -(16x,1000x)
- Memory: 16bit plain DRAM, Page Mode DRAM, 32b, 64b, SDRAM, DDR
 - -(4x,120x)
- Disk: 3600, 5400, 7200, 10000, 15000 RPM
 - -(8x, 143x)

Scaling: Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

[Credit: Wgsimon, wikepedia.com]

Transistor and Wires Scaling

- Process technology nodes are defined by their feature size
 - Minimum width of a transistor or wire
- As feature size decreases linearly ...
 - Quadratic increase in transistor density
 - Linear increase in transistor performance

Scaling and Architecture

- Datapath width
 - 4, 8, 16, 32, and 64 bit architectures (buses, ALU's)
- Datapath organization
 - Longer pipelines
 - More complex branch prediction
- On-chip memory
 - L1, L2 and L3 caches
- Propagation delay is a major problem
 - P4 dedicates two pipeline stages to propagation delay

Trends in IC Power

- Total Power = Dynamic Power + Static Power
- Dynamic (switching) power
 - Power consumed charging and discharging capacitances in integrated circuits (ICs)
- Static power
 - Power dissipated when circuits aren't switching
 - Also called "leakage" power

Dynamic Power

- $P_{dynamic} = \alpha fCV^2$
 - alpha = switching factor
 - -f = clock frequency
 - -C = load capacitance
 - -V =supply voltage
- $E_{dynamic} = CV^2$
 - Half dissipated during charging
 - Half stored in the capacitor

Static Power

- $P_{static} = I_{static} \cdot V$
- Contribution to P grows with each generation
- Exponentially dependent on
 - Junction temperature
 - $-V_{DD}, V_{Th}$

Power Example

- Many microprocessors have adjustable supply voltage. Suppose a 15% reduction in voltage results in a 15% reduction in frequency.
- What is the effect on dynamic power?

Power and Architecture

^{* &}quot;New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies" – Fred Pollack, Intel Corp. Micro32 conference key note - 1999. Courtesy Avi Mendelson, Intel.

Summary

- Computer architecture
 - Instruction set architecture
 - Computer organization
 - Computer hardware
- Trends
 - Performance: increasing!
 - Processor technology, comp. architecture, compilers
 - Bandwidth vs. latency: easier to improve bandwidth
 - Power: increasing with scaling, performance
 - An important limit

Next Time

- More Trends
 - Cost
 - Dependability

Backup Slides

Briefly: Implications of ILP ⇒ TLP

- What are the implications of moving to exploit TLP rather than ILP?
 - Software
 - Hardware