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Introduction

● Instruction Set Architecture: contract between 
programmer and designers (e.g.: IA-32, IA-64, 
X86-64)

● Computer organization: describe the functional 
units, cache hierarchy (e.g.: opteron vs pentium 
4)

● Computer architecture: manufacturing 
technology, packaging, etc (Pentium 4 vs 
Mobile Pentium 4)



  

Trends in technology

● Bandwidth versus latency: former increased 
much faster than the latter

● Moore's law: exponential growth in transistor 
count in ICs

● Power consumption: static (leakage) versus 
dynamic (switching) power consumption



  

Trends in IC cost

● ICs are produced on silicon wafers
● Multiple dies are produced per wafer
● Costs are split between:

● Fixed expenses: masks
● Recurring expenses: materials, manufacturing, 

testing, packaging, losses

● Wafers contain defects, and manufacturing can 
produce defective parts
● Yield: proportion of good dies on a wafer



  

Trends in IC cost

● Four equations to determine the final cost of an 
integrated circuit
● Dies per wafer
● Die yield
● Die cost
● IC cost



  

Dependability

● Mean Time to Failure (MTTF): how long before 
a failure occurs on average

● Failures In Time (FIT): number of failures per 
billion hours (10^9/MTTF)

● Assume independent failures, exponentially 
distributed lifetimes



  

Locality

● A processor spends most of its time in small 
portions of code
● Spatial locality: nearby addresses tend to be 

referenced together
● Temporal locality: you reuse things you've accessed 

recently
● Amdahl's law: compute the speedup resulting from 

an improvement in a certain portion of a system



  

Performance

● CPU performance equation

● Benchmarks: programs that allow you to get 
performance measurements by simulating real-
life workloads
● Geometric mean used to average unitless 

benchmark results, otherwise, use arithmetic mean



  

Pipelining

● Split an instruction in multiple consecutive stages 
which can be overlapped. Multiple instructions are 
in a different stage of execution at any given time

● N-stage pipeline means overlapped execution of N 
instructions. Ideal speedup=N.

● Never ideal!
● New delays introduced by pipeline
● Hazards: structural, data, control
● Others: memory contention, pipeline imbalance



  

Pipelining

● Simple 5-stage RISC pipeline: IF/ID/EX/MEM/WB



  

Pipeline hazards

● Structural: contention over a resource
● Data: unavailability of a result until a later time

● RAW, WAR, WAW
● RAW can be mitigated using forwarding

● Control: branch resolution causes a stall

● Many ways to mitigate hazards:
● Compiler techniques: reordering, register naming, 

profiling-assisted branch prediction
● Hardware techniques: speculation, register renaming, 

write buffers



  

Control hazards

● Flush pipeline: when a branch is encountered, 
freeze for 1CC to resolve branch

● Predict not-taken: start executing PC+4
● Predict taken: start executing PC+offset 

(requires address resolution in IF)
● Delayed branch: insert “neutral” instructions 

right after a branch to give the CPU time to 
resolve the branch outcome



  

Exceptions

● Exceptional situations that disrupt a program
● Arithmetic overflow, OS system call, div0, 

segfault, ...

● Various ways to qualify exceptions:
● Synchronous vs asynchronous
● User requested vs coerced
● Maskable vs non-maskable
● Within vs between instructions
● Resume vs terminate
● Precise vs imprecise



  

Multicycle operations

● The FP pipeline: separate pipelines for different 
types of operations: integer, FP mult, FP add, 
FP div 
● Those extra data paths either take more than 1CC 

or have multiple execution stages (add, mul, ...)



  

Multicycle operations

● Instruction can complete out of order: WAR, 
WAW hazards

● Exceptions can occur out of order
● New structural hazards: e.g.: DIV unit not 

pipelined
● Superpipelining: sub-dividing the operations 

further – e.g.: multicycle memory access



  

Instruction-level parallelism

● By overlapping the execution of multiple instructions, we obtain ILP

● To maximize ILP, we want to execute instructions in program order 
except when it doesn't affect the result of the program

● Three types of dependences which can cause hazards

● True/data: an instruction depends on a result produced by a 
previous instruction (RAW)

● Name/anti: two instructions use the same memory location, but 
don't exchange information (WAR)

● Name/output: two instructions write to the same memory 
location, and a third reads it before the second has properly 
written to it (WAW)

● Control: dependence on the outcome of a branch



  

Instruction-level parallelism



  

Loop unrolling

● We want to keep the pipeline full
● Replicate the body of a loop multiple times to 

find ILP and reduce the number of control 
dependences

● This technique yields larger executables, 
requires lots of registers

● We don't always know if we can unroll a loop 
since the upper bound is not always static



  

Branch prediction

● No prediction: flushing, delayed branch
● Static prediction: predict taken, not-taken
● Dynamic prediction: use past behavior

● 1-bit predictor: repeat past outcome
● 2-bit predictor: repeat past outcome provided it has 

occurred at least twice in a row
● Correlating predictor: (m,n) predictor uses 2^m n-bit 

predictors, depending on the outcome of the past m 
branches

● Tournament predictor: two predictor – one local, one 
global. Dynamically select between the two



  

Dynamic scheduling

● Hardware rearranges instructions to reduce 
stalls
● Allows out-of-order execution and completion
● Two stages instead of ID:

– Dispatch: decode and check for structural hazards (RS, 
ROB)

– Issue: wait on data and structural hazards (FU)
● In-order dispatch, but instructions can issue out-of-

order and execute out-of-order
● Tomasulo's algorithm for FP operations



  

Tomasulo's algorithm

● Performs implicit register renaming to get rid of 
WAR and WAW hazards

● Uses reservation stations to wait on RAW 
hazards

● Use a common data bus to broadcast and listen 
for execution results

● Two-step loads and stores: compute effective 
address, put in load/store buffers

● Can be adapted for speculative operation



  

Tomasulo's algorithm



  

Speculative Tomasulo

● Branching can limit the ILP exploitable by Tomasulo's algorithm

● Speculate on branch outcome and start executing the instructions 
that follow the branch

● Dangerous: can modify the processor state irreversibly or raise 
unwanted exceptions
● Keep track of speculative execution and undo those

● Execute o-o-o but commit in-order

● Use re-order buffer to hold uncommitted results

● Register file updated only when instructions commit

● RS buffer instructions between issue and execution, but renaming done by 
ROB

● Mispredicted branches flush the later ROB entries and restart execution

● ROB can provide precise exceptions since it commits in order



  

Speculative Tomasulo

(C) 2003 Elsevier Science (USA). All rights reserved.



  

Multiple-issue processors

● A CPU can have parallel pipelines
● Superscalar: schedule instructions when 

possible. More than one can issue at once.
● Static: fetch multiple instructions at once, issue all if 

possible. In-order execution.
● Dynamic: fetch multiple instructions at once, 

dynamic scheduling thereafter = o-o-o execution

● VLIW: (static superscalar, no hw hazard 
detection) pack instructions into fixed-size long 
words. Statically scheduled by the compiler



  

Memory hierarchy

● Memory performance has not increased as 
quickly as processor performance

● We would like an unlimited amount of very fast 
memory, but it's not feasible

● Principle of locality: temporal/spatial
● Hierarchy of memories, progressively larger but 

slower, organized in levels
● Multiple levels of cache down to main memory

● Hit/miss in a cache



  

Memory hierarchy

● Memory accesses per instruction: to fetch the 
instruction and (possibly) load/store to memory

● Miss penalty: how many CC to get the data 
from a slower memory

● Miss rate: how often you miss in a cache



  

Caches

● Block placement: where to do you put a block? 
(direct mapped, set associative, fully associative)

● Block identification: how do you know you have the 
right block? (tag, index, offsets)

● Block replacement: what do you do when a spot is 
taken in the cache? (Random, LRU, FIFO)

● Write strategy: what do you do on a write? (write 
through, write back)

● Write miss strategy: what do you do on a write miss? 
(write allocate, no-write allocate)



  

Caches

● How cache speedups can be calculated, can be 
integrated in the CPU time equation

● Cache addressing
● Index
● Tag
● Offsets

● Validity bit, dirty bit
● The three Cs of cache misses

● Compulsory: you've never accessed this data before
● Capacity: you need too much information
● Conflict: mapping rules map too many blocks to the same 

location



  

Caches

● Miss rate
● Multi-level caches

● Global miss rate
● Local miss rate

● Unified vs split caches (data vs instructions)
● Average Memory Access Time (AMAT)



  

Caches optimizations

● Reduce the miss rate
● Increase block size
● Increase cache size
● Increase associativity

● Reduce the miss penalty
● Multilevel caching
● Prioritize reads over writes

● Reduce hit time
● Avoid address translation during cache indexing



  

Cache coherence protocols

● Coherence: memory accesses to a single location 
are seen by all CPUs in order

● Consistency: memory accesses to various locations 
are seen by all CPUs in order

● Two classes of protocols:
● Directory based: central location
● Snooping: global bus

● Two ways to ensure cache coherence:
● Write invalidate: broadcast invalidation messages
● Write update: broadcast new value



  

Cache coherence protocols

● Snooping + write-back + write-invalidate
● Three states: Invalid, modified, shared



  

Virtual memory

● Each program gets a very large virtual address 
space which is then mapped to memory.

● Move pages in and out of memory as you need 
them, depending on RAM size

● Good for multitasking: isolation, memory 
sharing because virtual memory is relocatable

● The sum of all the memory needed by all 
programs can be larger than RAM. Use disk as 
extra memory space.



  

Virtual memory

● Virtual memory requires a mapping to physical 
memory

● Block placement: Fully associative
● Block identification: page table
● Block replacement: LRU to minimize page faults
● Write strategy: write-back because disk is slow
● Translation look-aside buffer (TLB) used to store 

recent translations



  

Final exam

● December 9th at 9am
● Allowed 2 double-sized crib sheets

● You have to hand those in with your exam

● 3h exam
● 120 points total

● 5 problems: 20pts each = 100pts
● 20 short answer questions = 20pts
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