

Tutorial 9

Caches (2)

What about cache misses?

Cache misses can occur for various reasons.
● Compulsory: first access to a block. It cannot

already be in the cache
● Capacity: more blocks are needed during the

execution of the program than will fit in cache
● Conflict: For set-associative and direct caches,

many blocks needed by a program map to the
same location in the cache.

What about cache misses?
When you have a n-way associative cache, you
can replace a block in the cache with a newer
one,

● At random: replace a random block in the set

● Least-recently used (LRU): replace the block
which was the least recently used

● First in, first out (FIFO): replace the block which
was put first into the cache

What do you do when you write?
When you do a write, you have to ask yourself if you
want the written data to live only in the cache, or to be
written all the way to main memory.

● Write through: write your change in the cache and in
main memory (ensures consistency)
● +: simpler to implement, better data coherency, read misses

don't lead to writes to slower memory

● Write back: write your change only to the cache (and it
will be reflected in main memory when the block is
replaced in the cache)
● +: writes at speed of cache. Multiple writes only require a

single write to slower memory, less bandwidth, less power

What do you do when you write?

When you write to the cache, a write miss can
occur. Two options here:

● Write allocate: when there is a write miss, the
block is loaded in the cache and the write is re-
attempted

● No-write allocate: when there is a write miss,
only main memory is changed (block not loaded
in the cache)

Cache Performance

● Average access time is usually used to assess performance
of a cache strategy (but total execution time of the program
is the only completely reliable indicator)

● Avg access time = Hit time + miss rate * miss penalty

● Miss rate = ((misses/1000instructions) / 1000) / (memory
accesses/instruction)

● Hit time: time to hit the cache

● Miss rate (per memory access): how many of the memory
accesses miss the cache

● Miss penalty: how long to recover from a miss

Cache Performance Example

● 16KB instruction + 16KB data cache; 36% of
instructions are data transfer instructions. Hit=1CC,
miss=200CC; 3.82 misses/1000 instructions for
instructions; 40.9 misses/1000 instructions for
data;74% memory accesses are for instructions
and 26% for data.

● Miss rate
i
 = (3.82/1000) / 1.00 = 0.004

● Miss rate
d
 = (40.9/1000) / 0.36 = 0.114

● Avg access time = 74%*(1+0.004*200) +
26%*(1+0.114*200) = 7.52CC

Cache Performance Example

● 32KB unified cache; 36% of instructions are
data transfer instructions; Hit=1CC,
miss=200CC; 43.3 misses/1000 instructions.
No structural hazards

● Miss rate = (43.3/1000) / (1 + 0.36) = 0.0318
● Avg. access time = 1 + 0.0318*200 = 7.36
● Miss rate and access time are per memory

access

Multi-Level Cache Performance
● Miss penalty

L1
 = hit time

L2
 + miss rate

L2
 * miss penalty

L2

● Avg access time = hit time
L1

 + miss rate
L1

 * miss

penalty
L1

= hit time
L1

 + miss rate
L1

 * (hit time
L2

 + miss rate
L2

 *

miss penalty
L2

)

● Local miss rate: misses in a cache / total accesses to
this cache

● Global miss rate: misses in cache / total memory
accesses by processor

Multi-Level Cache Example

● Suppose 40 misses in L1 / 1000 mem ref; 20 L2
misses / 1000 mem ref; Hit

L2
=10CC,

Miss
L2

=200CC, Hit
L1

=1CC.

● MissRate
L1

=40/1000; MissRate
L2

=20/40

● Avg access time = hit time
L1

 + miss rate
L1

 * (hit

time
L2

 + miss rate
L2

 * miss penalty
L2

)

= 1 + 4% * (10 + 50% * 200) = 5.4CC
● What if you had a third level of cache?

Midterm Review

● Three questions (15% of your term grade)
● 1 short answers
● 2 longer problems

● Covers lectures 14-23
● Dynamic scheduling
● Multiple-issue processors
● Speculation
● Memory hierarchy and caches

Midterm Review

● Dynamic scheduling and speculation
● Tomasulo algorithm

– Implicit register renaming
– In-order issue, out-of-order exec, out-of-order completion

● Speculation
– Guess branch outcome to find more ILP
– Incorrect guesses must be cancelled

● Speculative Tomasulo algorithm
– In-order issue, out-of-order exec, in-order completion
– Uses ROB

Midterm Review

● Multiple-issue processors
● Multiple pipelines, issue more than 1 instr/CC, want

CPI < 1
● Superscalar: issue more than one instruction per

CC whenever possible
– Static (in-order) or dynamic (ooo) scheduling

● VLIW: static issue; compiler packs independent
instructions into very large CPU instructions

Midterm Review

● Memory hierarchy
● Average memory access times
● Single level cache

– Types of cache misses: 3 C's

– Unified versus split

– Associativity: direct, set, full

– Policies: write-through/back, (no-)write-allocate, FIFO/LRU/rand

● Multi-level caches
– Local miss rate, global miss rate

● How to split the memory addresses into fields to address the
various levels of cache

● Virtual memory

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

