

Tutorial 8

Caches

© 2005 Linda Wang, Dept. of Elec. & Comp. Eng., McGill University

Memory hierarchy

P

Caches

Main
memory

Magnetic disk

• Consists of multiple levels of
memory with different speeds
and sizes.

• A level close to the processor
is a subset of any level further
away.

• Gives the illusion of a memory
that is as large as the lowest
level, but as fast as the
highest level.

S
i
z
e

Caches

● Memory is often divided in a hierarchy of
memories of different sizes/speeds for cost and
efficiency reasons.
● Without fast caches, CPU speed would be limited by

the speed of its memory.
● The faster a memory, the costlier it is. You therefore

normally only have small quantities of very small
memory.

● A cache corresponds to a small and very fast
memory used to store a subset of commonly
accessed items.

Common definitions

● A cache is divided into fixed-size blocks,
containing multiple words of data.

● The principles of temporal and spatial locality tell
us that recently accessed data, and data close
to it, are likely to be reused in the near future.

● When you want to access data and it is in the
cache, there is a cache hit, otherwise miss.

● A cache can be unified or split, depending on
whether it contains both data and/or instructions

© 2005 Linda Wang, Dept. of Elec. & Comp. Eng., McGill University

Cache Organization

• Data is stored in blocks
• Blocks contain multiple

words of data
• Each block is selected by

an index
• Valid bit indicates

whether data is valid
• Tag is the “remaining”

part of the address

Valid Tag DataIndex
0
1
2
3
…

© 2005 Linda Wang, Dept. of Elec. & Comp. Eng., McGill University

Side note: byte address, block address
• Suppose that memory addresses are 32 bits, and each

block of data is 8 words of 8 bytes (64 bytes / block).
• Each block contains 64 (2^6) bytes of data. Since memory

is byte-addressable, we need 6 bits as an offset to the
block. In theory, we are thus working with 64M (2^26) block
addresses.

block
offset

31 … 6 5 … 0

 block address
 byte address

© 2005 Linda Wang, Dept. of Elec. & Comp. Eng., McGill University

Side note: byte address, block address

• Since we cannot have 64M blocks in the cache, some
locations are re-used by multiple block addresses. When a
block of data is loaded from main memory into the cache, its
block address is divided into 2 fields:

– Index: the lower bits. Used to determine where to put the
data in the cache.

– Tag: the upper bits. This is entered into the tag field of the
cache entry.

• Many different block addresses map to the same index in
the cache, so we need the tag entry to verify which block is
currently in the cache.

tag index

© 2005 Linda Wang, Dept. of Elec. & Comp. Eng., McGill University

The address issued by the processor is divided into 3 fields

Then:
1. The index field is used to select one block from the cache
2. The tag is compared with the tag field of the selected block

• If they match, then this is the data we want = cache hit
• Otherwise, it is a cache miss and the block will need to be

loaded from main memory
3. The block offset selects the requested part of the block, and

sends it to the processor

Side note: byte address, block address

tag block
offsetindex

 block address

© 2005 Linda Wang, Dept. of Elec. & Comp. Eng., McGill University

Depending on the processor word size, the block offset can be
further divided, if a block contains more than one word.

If the CPU can only address 8-byte words, and a block contains
64 bytes (8 words), the byte offset will be 3 bits long (to address
the 8 bytes of a word) and the word offset will also be 3 bits long
(to address the 8 words of a block). The total is what we expect,6
bits (to address the 64 bytes of the block).

Side note: byte address, block address

word offset byte offset

 block offset

Where can a block be placed?

● Direct mapped: a block with a given address
can only be placed in a single location in the
cache

● Fully associative: a block can be placed
anywhere in the cache

● Set associative: a block can be placed
anywhere within a set of locations in the cache

Where can a block be placed?

Assuming a cache with N=2n blocks, and a
block with block address A,

● Direct mapped: the index is A mod N (the last n
bits tell you the block location)

● Fully associative: The block can go anywhere in
the cache

● Set associative: with K sets (K=2k), block A can
only go in set A mod K (the last k bits tell you
the set nb.)

Simple direct-mapped cache

Word offset

© 2005 Linda Wang, Dept. of Elec. & Comp. Eng., McGill University

Example (direct-mapped)

• A cache is direct-mapped and has 64 KB data. Each
block contains 32 bytes. The address is 32 bits wide.
What are the sizes of the tag, index, and block offset
fields?

• # bits in block offset = 5 (since each block contains 2^5
bytes)

• # blocks in cache = 64×1024 / 32 = 2048 blocks
– So # bits in index field = 11 (since there are 2^11

blocks)
• # bits in tag field = 32 - 5 - 11 = 16 (the rest!)

4-way set-associative cache

© 2005 Linda Wang, Dept. of Elec. & Comp. Eng., McGill University

Example (set-associative)

• A cache is 4-way set-associative and has 64 KB data.
Each block contains 32 bytes. The address is 32 bits
wide. What are the sizes of the tag, index, and block
offset fields?

• # bits in block offset = 5 (since each block contains 2^5
bytes)

• # blocks in cache = 64×1024 / 32 = 2048 (2^11)
• # sets in cache = 2048 / 4 = 512 (2^9) sets (a set is 4

blocks kept in the cache for each index)
– So # bits in index field = 9

• # bits in tag field = 32 – 5 - 9 = 18

What about cache misses?
When you have a n-way associative cache, you
can replace a block in the cache with a newer
one

● At random: replace a random block in the set
● Least-recently used (LRU): replace the block

which was the least recently used
● First in, first out (FIFO): replace the block which

was put first into the cache

Why would you choose one over the others?
● Efficiency vs ease of implementation

What do you do when you write?
When you do a write, you have to ask yourself if you
want the written data to live only in the cache, or to be
written all the way to main memory.

● Write through: write your change in the cache and in
main memory (ensures consistency)

● Write back: write your change only to the cache (and
it will be reflected in main memory when the block is
replaced in the cache)

Why choose one over the other? Speed vs
implementation complexity vs data consistency

● Write back sometimes uses a dirty bit to avoid writing
back a block to main memory if it hasn't been
modified

What do you do when you write?

When you write to the cache, you can have a
write miss. Two options here...

● Write allocate: when there is a write miss, the
block is loaded in the cache and the write is re-
attempted

● No-write allocate: when there is a write miss,
only main memory is changed (block not loaded
in the cache)

	Slide 1
	Memory hierarchy
	Slide 3
	Slide 4
	Cache Organization
	Side note: byte address, word address, & block address
	Where to put data in the cache (cont'd)
	How to load a word from cache
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Example (cont'd)
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

