

Tutorial 7

EduMIPS64

Course project

● Project website
● Worth 30% of your grade
● Milestones

● Project proposal (5%): due Oct. 31
● Progress report (10%): due Nov. 16
● Final presentation (25%): due Dec. 5/6
● Final report (60%): due Dec. 6

● Programming involved
● Could take a while! Start early

http://www.info425.ece.mcgill.ca/project.html

EduMIPS64

● Free (open-source) MIPS64 simulator
● Only the integer pipeline is implemented

● Written in Java
● Compiled using Apache ANT
● Runs assembly programs

● Subset of MIPS64 assembly (and no FP)

● Basic I/O facilities
● Read/write to/from the console
● Read/write to/from files

Obtaining the software

● Download the latest source release
● Sourceforge link
● edumips64-0.5.3.tar.bz2

● Extract the sources
● tar xvjf edumips64-0.5.3.tar.bz2

● Build the sources
● ant

● Run the simulator
● java -jar edumips64-svn.jar

Tested on
tr5130gu-1.ece.mcgill.ca

http://sourceforge.net/projects/edumips64/files/edumips64/0.5.3/

Using EduMIPS64

● Read the manual!
● Runs programs written in MIPS64 assembly
● Will not run assembly generated by a (cross-)compiler

(e.g.: gcc)
● Shows

● Timing diagrams, pipeline state
● Register file / memory contents
● RAW hazards (can enable forwarding)
● CC / instructions processed / CPI

● Allows you to step through the code and see the
resulting changes on the processor state

http://sourceforge.net/projects/edumips64/files/manual/

MIPS64 assembly

; This is a comment

.data

label: .word 15 ;This is an inline comment

.code ;or .text

daddi r1, r0, 1

syscall 0 ; TRAP 0; HALT

MIPS64 assembly

● Two sections
● Data: where you store the data on which you compute

(corresponds to memory)
– Can store bytes (1B), half-words (2B), words (4B) or double-words

(8B)

● Code: there your actual program instructions live
– 32 integer registers (R0-R31)

– Operands can be
● Registers [R1]
● Immediate values [10]
● Addresses [0(R1)]

MIPS64 assembly

● Instructions can be

● ALU instructions

– AND, DADD, DADDU, DDIV, ...
● Load/store instructions

– LD, SD, ...
● Flow control instructions

– J, JR, B, BEQ, ...
● System calls

– exit, open, close, read, printf, ...
● Other

– BREAK, NOP, HALT

Dinero Frontend

● Behavioral cache simulator

● Allows you to test different cache strategies
● Reads trace files, which list memory addresses (I/R/W)

...
i 000000000000001C 4
i 0000000000000020 4
r 00000000000000D8 8
w 0000000000000170 8
...

Code example

● Have a look at those samples

http://www.edumips.org/attachment/wiki/Uplo
ad/Samples-pack-0.1.tar.bz2

When writing assembly,
start with C!

Code structure

● Directories
● core/: main code of the simulator
● data/: some documentation
● docs/: main documentation
● libs/: external libraries used by the simulator
● ui/: user interface
● utils/: exception classes, translations, user settings
● test/: validation test programs

Code structure

● core/: main code of the simulator
● Parser.java: parse the assembly source file
● BitSet{32,64}.java: represent a 32/64-bit quantity
● CPU.java: top-level entity representing the processor

– SymbolTable.java: map labels to data/instructions
– Register.java: single GPR element (R0 special case)
– Memory.java: data and instruction memories

● MemoryElement.java: one data memory element
● is/Instruction.java: one instruction

● IOManager.java: process open/read/... system calls

Code structure

● core/is/: instructions definitions
● Instruction.java: generic definition of an instruction

– ALUInstructions.java: ALU
● ALU_{I,R}Type.java

– ADDU.java, ...
– FlowControlInstructions.java: Flow control

● FlowControl_{I,J,R}Type.java
– BNE.java, ...

– LDSTInstructions.java: Load/Store
● Loading.java, Storing.java

– LD.java, ...
● InstructionUtils.java: define binary ALU operations

Testing your changes

● The modifications you make to the simulator
must not impact the outcome of any program

● You are expected to test your modifications
thoroughly
● Determine what might break
● Design test programs to validate those cases

● You may also validate your changes against the
unmodified version of the simulator

● See test/ for sample test programs

Source version control

● It is recommended that you use a version
control system for your coding work

● Git and mercurial are widely used nowadays
● Pro Git - e-Book
● Hg Init: a Mercurial tutorial

● You can host your repositories online for easy
collaboration. e.g.:
● Bitbucket (free private repo., supports git/mercurial)
● Github (free public repo., supports git)

http://progit.org/book/
http://hginit.com/
https://bitbucket.org/
https://github.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

