Tutorial 5

Exceptions
Branch Prediction

MIPS FP pipeline

Integer unit
EX

FPAnteger multiply

© 2005 Linda Wang, Dept. of Elec. & Comp.
Eng., McGill University

MIPS FP pipeline

Sample program:

Loop: L.D F1, O(R1)
MULT.D F2,F1,F3
ADD.D F4,F1,F2
DADDUI R1, R2, #1
BNEZ R1, loop
DSUBI R6, R6, #1

How would those instructions be scheduled in this pipeline?

Exceptions

 Happen when exceptional conditions occur in the CPU
* Synonyms : interrupt, fault (not used consistently)

e.g.:

— Integer arithmetic overflow

— Misaligned memory address

— Undefined instruction

— Breakpoint

— OS service routine

» Alter the flow of the program : the instructions (in the code)
following the instruction that caused the exception should not
proceed immediately. Some other operations might need to be
performed before.

Exceptions

* Synchronous (are caused by the program itself its the data) or
asynchronous (mostly external causes)

* User requested (program requests it/predictable) or coerced (caused by
a hardware event/unpredictable)

* User maskable (the program can ignore the exception) or non-maskable
(cannot)

e Within (in the middle of an instruction/mostly caused by what the
instruction is doing) or between instructions

 Resume (program continues after exception handled) or terminate
(program stops)

See Figure A.27 for examples

Exceptions

Precise : If the pipeline can be stopped and

— Instructions that come after are cancelled, can be restarted from the
beginning once the exception has been handled

— Instructions that ran before the faulting instruction complete normally

— Why is that useful?
* Floating point standard
* Virtual memory
— Difficulties?
* Simultaneous exceptions (e.g.: EX of instr2 and MEM of instrl)
* Out-of-order exceptions (e.g.: IF of instr2 and MEM of instrl)

* Floating point pipeline
— Often complete out-of-order, e.g.: division and multiplication
— Multi-cycle operations mean multiple instructions can be have issued

Exceptions

Precise : If the pipeline can be stopped and

— Instructions that come after are cancelled, can be restarted from the
beginning once the exception has been handled

— Instructions that ran before the faulting instruction complete normally

Difficulties:

— Simultaneous exceptions (e.g.: EX of instr2 and MEM of instrl)
— Out-of-order exceptions (e.g.: IF of instr2 and MEM of instrl)

In MIPS, exception status vector with each instruction in the
pipeline. Exception flag cancels writes of faulting instruction and
following ones. Status vector checked between MEM/WB ->
exceptions handled in order.

Branch prediction

* Main idea: guess since we don’t know which way a branch will go
— If we'’re right, one CC gained compared to flushing
— If we’re wrong, same loss as flushing

e Static schemes: don’t depend on historical trends
— Predict taken, predict non-taken

 Dynamic schemes: depend on past behavior of the branches
— Local: look at a given branch in isolation
— Global: look at previous branches in correlation with the current one

1-bit branch predictor

* Main idea: we use the history of a branch's past outcomes to
predict its future outcomes.

e 1-bit predictor: when we execute a branch, first check if it was
taken when it was last executed: if yes, predict it will be taken this
time; if no, predict it will not be taken this time.

e Example: for (i=0; i<10; i++) { .. };
This loop is iterated 10 times and involves one branch, e.g.,
loop:
SLTI R2,R1,#10 ;is i<10?
BNEZ R2,1loop ybranch if yes
The branch is taken in the first 9 iterations, and not taken on the
10th iteration. What's the result of using 1-bit prediction?

1-bit branch predictor (cont'd)

* (Assume that when the branch is executed for the first time,
we predict that it is not taken.)

Iteration #: 1 2345678910
Predicted branch outcome: NﬂT T TTTTTT T,
Actual branch outcome: T TTTTTTTTN

* How is 1-bit branch prediction implemented in hardware?

— Use a branch history table: there is an entry in the table
for every branch encountered in the program. (Actually, table is
indexed using lower bits of branch instruction’s PC. * -> 1 possible)

— Each table entry contains one prediction bit for that branch,
e.g., 0 for predict not taken (N), 1 for predict taken (T).

1-bit branch predictor (cont'd)

* The prediction bit is used to predict the branch outcome. It is
updated after the branch's actual outcome is known.

* The following shows how the prediction bit for the branch in
our example changes in each iteration of the loop:

Iter# Pred. Actual
bit outcome
1 N T T
2 T T
3 T T
4 T T
5 T T
6 T T
7 T T
8 T T
9 T T
10 T N N

2-bit branch predictor

* With 1-bit prediction, if we mispredict once about the branch, we
change our mind instantly about the next prediction.

* This might not be a good thing, thus use 2-bit branch prediction
instead: the idea is that we have to mispredict twice in a row
before changing our mind.

 Example (imagine a for loop executed again and again):

Predicted with 1-bit: .NTTTTNTTTTNTTTTNTTTT..
Predicted with 2-bit: .NNTTTTTTTTTTTTTTTTTT...

Actual outcome: . TTTTNTTTTNTTTTNTTTTN..

2-bit branch predictor (cont'd)

 Each entry in the table now needs 2 prediction bits. They are updated
according to the following:

Not taken (T 1)
Predict taken Predict taken
11 AN 10
Taken
Taken ; Not taken
(Nl) Not taken (NO)
Predict not taken Predict not taken
01 OO
Taken

Not taken

McGill University
Text figures © 2003 Elsevier Science
{1ISA)

13

2-bit branch predictor (cont'd)

* Let's look at one loop from previous example:

Predicted with 2-bit: NNTTTTTTTTTTTTTTTTTT..

Actual outcome: TTTTNTTTTNTTTTNTTTTN...
Iter# Pred. Predicted Actual
bit outcome outcome
NO N N1
N1 TO

© 2005 Linda Wang, Dept. of Elec. & Comp.
Eng., McGill University

Correlating branch predictors

 Sometimes the outcome of one branch depends on the outcomes

of other branches in the code, e.g.,
Bl:if (a == 0)

b=1;
B2:if (b !'= 1)

Here the outcome of the second branch B2 depends on the
outcome of the first branch B1. In other words, the branch
outcomes are correlated.

* We can exploit this correlation: use the outcomes of previously
executed branches to predict the outcome of the current branch.

 We keep track of different predictions for all possible outcomes of
the previous branches.

Correlating branch predictors (cont'd)

A note on the the (m, n) notation:
m: number of previous branches correlated
n: number of bit for predictor

* (1, 1) correlating branch predictor means
— Use the outcomes of the previous 1 branch executed
— And use a 1-bit branch predictor

* (2, 1) correlating branch predictor means
— Use the outcomes of the previous 2 branches executed
— And use a 1-bit branch predictor

* (1, 2) correlating branch predictor means
— Use the outcomes of the previous 1 branch executed
— And use a 2-bit branch predictor

Correlating branch predictors (cont'd)

e (1, 1) correlating branch predictor: each branch history table
entry has 2 fields of 1 bit each, e.g.,

branch 1f prev branch 1f prev branch
not taken taken

B2 T N

B3 T T

B2 will be predicted taken if the previous branch executed was
not taken and not taken if the previous branch executed was
taken. B3 will be predicted taken in both cases.

e Similarly, for a (1, 2) predictor, we could have:

branch 1f prev branch 1f prev branch
not taken taken
B2 T1 NO

B3 NO N1

Example

A machine uses a (1, 2) correlating branch predictor. Consider a
code segment that has three branches, B1, B2, and B3. At one point
in execution, all three branches have been repeatedly taken, and all
their prediction bits are set to TO. A sequence of branch outcomes
that occurs right after this point are given below, listed in the order
that the branches are executed. What is the branch misprediction
rate for this sequence?

Branch | B1 B2 B3 B2 Bl B3 Bl B3 Bl B2 BI

Example (cont'd)

Solution: Assume that the two predictors are named predictor 1
and predictor 2, where predictor 1 is used if the previous branch
executed was taken, and predictor 2 is used if the previous branch
executed was not taken.

Bl B2 B3 B2 Bl B3 Bl B3 Bl B2 BI1

|

+

|

|

+
Predicted |
Outcome |
+

|

|

+

|

|

Actual
OQutcome

Update 1
Update 2

Example (cont'd)

Branch | B1 R2 BR3 R2 Rl B3 Bl B3 Bl BR2 R1
__________ +___
pred.1 (T) | (T® T1 NO NO NO QO N0 QO 10 (TO
Pred.2 (N)| TO (T® TO (T0) QN0 N1 TO (TO) TO
__________ _|__
Predicted |
Outcome | T T T T T N N N N T T
__________ _|__
Actual |
Outcome | N T N N N T N T N T T
__________ _|__
Update 1 |
Update 2 |

So the branch misprediction rate is 6/11 = 54.5%.

Exercise: repeat using a (1, 1) correlating branch predictor.

© 2005 Linda Wang, Dept. of Elec. & Comp.

2
0 Eng., McGill University

