Assuming 4-core CPU chip with total die area $=3.1 \mathrm{~cm}^{2}$, defect rate $=0.6$ defect $/ \mathrm{cm}^{2}$, and $\alpha=4$.
Question: Find the probability that at least 3 out of 4 cores are working (so you can sell the chip as a 3core CPU).

Solution:
We can assume 4 independent cores, each with area $=0.775 \mathrm{~cm}^{2}$.
DieYield $_{\text {core }}=1 *((1+0.6 * 0.775 / 4))^{\wedge-4}=0.644$
This problem is similar to tossing an unfair coin, where $P($ heads $)=0.644, P($ tails $)=0.356$. The probabilities of each core containing a defect are independent.

Say $\mathrm{G}=$ good core, $\mathrm{B}=$ bad core, and $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}=$ status of each core $(\mathrm{G}$ or B$)$
$\mathrm{P}(0$ defect $)=\mathrm{P}(\mathrm{GGGG})=0.644 \wedge 4=\mathbf{0 . 1 7 2}$
$\mathrm{P}(1$ defect $)=\mathrm{P}($ GGGB U GGBG U GBGG U BGGG $)=\mathrm{P}(\mathrm{GGGB})+\ldots+\mathrm{P}(\mathrm{BGGG})$ because probabilities are independent.
The individual scenario GGGB has $\mathrm{P}(\mathrm{GGGB})=\mathrm{P}(\mathrm{GGBG})=\mathrm{P}(\mathrm{GBGG})=\mathrm{P}(\mathrm{BGGG})$

$$
=0.644 \wedge 3 * 0.356^{\wedge} 1=0.095
$$

so $\mathrm{P}(1$ defect $)=(4$ choose 1$) * 0.095=0.380$
finally, the problem asks for $\mathrm{P}(1$ defect U 0 defect $)=\mathrm{P}(1$ defect $)+\mathrm{P}(0$ defect $)=0.172+0.380=\mathbf{0 . 5 5 2}$.

Question: Find the probability that at least 2 out of 4 cores are working (so you can sell the chip as a 2core, 3-core or 4-core CPU).
$\mathrm{P}(0$ defect $)=0.172$
$\mathrm{P}(1$ defect $)=0.380$
$\mathrm{P}(2$ defects $)=(4$ choose 2$) * \mathrm{P}(\mathrm{GGBB})$, since all permutations are equally likely

$$
=6^{*}\left(0.644^{\wedge} 2 * 0.356^{\wedge} 2\right)=0.315
$$

The problem asks for $\mathrm{P}(2$ defects or less $)=0.315+0.380+0.172=\mathbf{0 . 8 6 7}$

Question: Find the probability that at least 1 out of 4 cores are working (so you can sell the chip as a 1core, 2-core, 3-core or 4-core CPU).
$\mathrm{P}(0$ defect $)=0.172$
$\mathrm{P}(1$ defect $)=0.380$
$\mathrm{P}(2$ defects $)=0.315$
$\mathrm{P}(3$ defects $)=(4$ choose 3$) * \mathrm{P}(\mathrm{GGBB})$, since all permutations are equally likely $=4 *\left(0.644 \wedge 1 * 0.356^{\wedge} 3\right)=0.116$
The problem asks for $\mathrm{P}(3$ defects or less $)=0.315+0.380+0.172+0.116=\mathbf{0 . 9 8 3}$

